Cho a,b,c lớn hơn 0
CMR : \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\le\frac{a+b+c}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của 원회으Won Hoe Eu - Toán lớp 8 | Học trực tuyến
Hơi tắt 1 xíu ^.^
Áp đụng bất đẳng thức Cauchy-Schwartz , ta có :
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự , ta có:
\(\frac{bc}{b+3c+2a}=\frac{bc}{\left(a+b\right)+\left(a+c\right)+2c}\le\frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)\)
\(\frac{ac}{c+3a+2b}=\frac{ac}{\left(b+c\right)+\left(b+a\right)+2b}\le\frac{ac}{9}\left(\frac{1}{b+c}+\frac{1}{b+a}+\frac{1}{2a}\right)\)
Cộng vế theo vế ta có :
\(\frac{ac}{c+3a+2b}+\frac{bc}{b+3c+2a}+\frac{ab}{a+3b+2c}\)
\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)+\frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)+\frac{ac}{9}\left(\frac{1}{b+c}+\frac{1}{b+a}+\frac{1}{2a}\right)\)
\(=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{1}{9}\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\frac{1}{9}\left(\frac{ac}{a+b}+\frac{bc}{a+b}\right)+\frac{a}{18}+\frac{b}{18}+\frac{c}{18}\)\(=\frac{a+b+c}{6}\)
\(\RightarrowĐPCM\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta có :
\(\frac{ab}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\cdot\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{ab}{2b}\right)=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Từ đó suy ra \(A\le\frac{1}{9}\cdot\Sigma\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=\frac{1}{9}\cdot\left(a+b+c+\frac{a+b+c}{2}\right)\)
\(=\frac{1}{9}\cdot\frac{3\left(a+b+c\right)}{2}=\frac{1}{9}\cdot\frac{3\cdot6}{2}=1\)
Vậy \(maxA=1\Leftrightarrow a=b=c=2\)
Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)
Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)
a/Áp dụng (1) có
\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:
\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)
Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)
b/Áp dụng (1) có:
\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)
Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)
\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)
Cộng (5),(6) và (7) có:
\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)
\(P=\sum\frac{ab}{a+3b+2c}=\sum\frac{ab}{a+c+b+c+2b}\le\frac{1}{9}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{ab}{2b}\right)=\frac{a+b+c}{6}\)
Dấu "=" có xảy ra tại \(a=b=c\)
Áp dụng bất đẳng thức Cauchy-Schwartz ta có
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right).\)
Tương tự ta có 2 bất đẳng thức khác nữa
\(\frac{bc}{b+3c+2a}=\frac{bc}{\left(b+a\right)+\left(a+c\right)+2c}\le\frac{bc}{9}\left(\frac{1}{b+a}+\frac{1}{a+c}+\frac{1}{2c}\right).\)
\(\frac{ac}{c+3a+2b}=\frac{ac}{\left(a+b\right)+\left(b+a\right)+2a}\le\frac{ac}{9}\left(\frac{1}{c+b}+\frac{1}{b+a}+\frac{1}{2a}\right).\)
Cộng ba bất đẳng thức lại cho ta \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\)
\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)+\frac{bc}{9}\left(\frac{1}{b+a}+\frac{1}{a+c}+\frac{1}{2c}\right)+\frac{ac}{9}\left(\frac{1}{c+b}+\frac{1}{b+a}+\frac{1}{2a}\right)\)
\(=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{1}{9}\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\frac{1}{9}\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)+\frac{a}{18}+\frac{b}{18}+\frac{c}{18}\)
\(=\frac{a+b+c}{6}.\) (ĐPCM)