Tìm giá trị lớn nhất hoặc nhỏ nhất của đa thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=...
dăt 5x=y viet cho gon
x=y/5
-A=y^2-y/5+3
=(y-1/10)^2+3-1/100
A=-(y-1/10)^2-299/100
GTLN=-299/100 khi y=1/10
Lời giải:
Ta có:
$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$
$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$
$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$
Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$
\(-5x^2+x-7=-5\left(x^2-\frac{1}{5}x+\frac{7}{5}\right)=-5\left(x^2-2\cdot\frac{1}{10}\cdot x+\frac{1}{100}-\frac{1}{100}+\frac{7}{5}\right)\)
\(=-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\)
\(-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\le\frac{139}{20}\)
GTLN của đa thức trên là 139/20
B=2x2+10x-1
=2(x2+5x-\(\frac{1}{2}\))
=2(x2+2x.\(\frac{5}{2}\)\(+\frac{25}{4}\)\(-\frac{27}{4}\))
=2[(x2+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]
=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\ge\frac{-27}{2}\)(vì (x+5/2)2\(\ge0\))
Dấu = xảy ra khi :
x+\(\frac{5}{2}\)=0
<=>x=\(\frac{-5}{2}\)
Vậy GTNN của B là \(\frac{-27}{2}\)khi x= \(\frac{-5}{2}\)
A = 2x^2 +10x - 1
2A = 4x^2 + 20x -1
2A = (2x+5)2 - 26
A = (2x+5)2/2 - 13
A có GTNN thì (2x+5)2/2 = 0
2x+ 5 =0
x = -5/2
b: Ta có: \(x^2-x+5\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\)
\(\Leftrightarrow\dfrac{2022}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{8088}{19}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Lời giải:
$B=5x^2+2x-3=5(x^2+\frac{2}{5}x+\frac{1}{5^2})-\frac{16}{5}$
$=5(x+\frac{1}{5})^2-\frac{16}{5}$
$\geq 5.0-\frac{16}{5}=\frac{-16}{5}$
Vậy GTNN của $B$ là $\frac{-16}{5}$. Giá trị này đạt tại $x+\frac{1}{5}=0\Leftrightarrow x=-\frac{1}{5}$
---------------------------------
$C=-9x^2+5x+1=1-(9x^2-5x)$
$=\frac{61}{36}-[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]$
$=\frac{61}{36}-(3x-\frac{5}{6})^2$
$\leq \frac{61}{36}$
Vậy gtln của $C$ là $\frac{61}{36}$. Giá trị này đạt tại $3x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{18}$
-----------------------
$D=16x^2-8x+12=(4x)^2-2.4x.1+1+11$
$=(4x-1)^2+11\geq 0+11=11$
Vậy gtnn của $D$ là $11$. Giá trị này đạt tại $4x-1=0\Leftrightarrow x=\frac{1}{4}$