Tìm số nguyên n để: 3n+9/ n−4 là số hữu tỉ dương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TD
1
HN
0
24 tháng 8 2017
a)\(n-3\ne0\Leftrightarrow n\ne3\)
b)\(n-3>0\Leftrightarrow n>3\)
c)\(n-3< 0\Leftrightarrow n< 3\)
Lời giải:
Để $\frac{3n+9}{n-4}$ là số hữu tỉ dương thì có 2 TH xảy ra:
TH1:
\(\left\{\begin{matrix} 3n+9>0\\ n-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n>-3\\ n>4\end{matrix}\right.\Leftrightarrow n>4\)
TH2:
\(\left\{\begin{matrix} 3n+9< 0\\ n-4< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n< -3\\ n< 4\end{matrix}\right.\Leftrightarrow n< -3\)