giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số
\(\dfrac{x-1}{3}\)-\(\dfrac{3x+5}{2}\)≥1-\(\dfrac{4x+5}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>2(x+2)>3x+1
=>2x+4-3x-1>0
=>-x+3>0
=>-x>-3
=>x<3
2: =>12x^2-2x>12x^2+9x-8x-6
=>-2x>-x-6
=>-x>-6
=>x<6
3: =>4(x+1)-12>=3(x-2)
=>4x+4-12>=3x-6
=>4x-8>=3x-6
=>x>=2
4: =>-5x<=15
=>x>=-3
5: =>3(x+2)-5(x-2)<30
=>3x+6-5x+10<30
=>-2x+16<30
=>-2x<14
=>x>-7
6: =>5(x+2)<3(3-2x)
=>5x+10<9-6x
=>11x<-1
=>x<-1/11
=>5(4x-1)-2+x<=3(10x-3)
=>20x-5+x-2<=30x-9
=>21x-7<=30x-9
=>-9x<=-2
=>x>=2/9
A, 3X+6>0
(=)3X>-6
(=)X>-2
VẬY ...
B,10-2X≥-4
(=)-2X≥-4-10
(=)-2X≥-14
(=)X≤7
VẬY....
C,
(=)
(=) -15X+10>-3+3X
(=)-15X-3X>-3-10
(=)-18X>-13
(=)X<
g: =>12x+1>=36x+12-24x-3
=>12x+1>=12x+9(loại)
h: =>6(x-1)+4(2-x)<=3(3x-3)
=>6x-6+8-4x<=9x-9
=>2x+2<=9x-9
=>-7x<=-11
=>x>=11/7
i: =>4x^2-12x+9>4x^2-3x
=>-12x+9>-3x
=>-9x>-9
=>x<1
\(\dfrac{x-2}{2}+1\le\dfrac{x-1}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-2\right)}{6}+\dfrac{1.6}{6}\le\dfrac{2\left(x-1\right)}{6}\)
`<=> 3x - 6 + 6 <= 2x-2`
`<=> 3x <= 2x-2`
`<=> 3x -2x <= -2`
`<=> x <= -2`
\(\dfrac{x-2}{2}\)+1≤\(\dfrac{x-1}{3}\)
<=>\(\dfrac{3x-6}{6}\)+\(\dfrac{6}{6}\)≤\(\dfrac{2x-1}{6}\)
<=>3x-6+6≤2x-1
<=>x<-1
\(\Leftrightarrow3\left(1-2x\right)-2\left(x+1\right)< =6\)
=>3-6x-2x-2<=6
=>-8x+1<=6
=>-8x<=5
hay x>=5/8
Ta có: \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}\)
\(\Leftrightarrow2\left(x-1\right)-3\left(3x+5\right)\ge6-4x-5\)
\(\Leftrightarrow2x-2-9x-15-6+4x+5\ge0\)
\(\Leftrightarrow-3x\ge18\)
hay \(x\le-6\)