Cho tam giác ABC. GÓc B và góc C nhỏ hơn 90 độ vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE. vẽ DI và EK cùng vuông góc với BC. H là chân đường cao hạ từ A. CMR:
a, BI=CK
b, EK=HC
c, BC=DI+EK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ đường cao AH.
a) \(\Delta BHA=\Delta DIB\)(Cạnh huyền góc nhọn) \(\Rightarrow BI=AH\)(2 cạnh tương ứng) \(\left(1\right)\)
\(\Delta AHC=\Delta CKE\)(Cạnh huyền góc nhọn) \(\Rightarrow\hept{\begin{cases}AH=CK\left(2\right)\\EK=HC\end{cases}}\)(2 cặp cạnh tương ứng)
Từ (1) và (2) \(\Rightarrow BI=CK\)
b) Ta có: \(BC=BH+HC\). Mà \(DI=BH\)(2 cạnh tương ứng) và \(EK=HC\)(cmt)
\(\Rightarrow BC=DI+EK\)