\(\left(4,5-x\right)^4+\left(5,5-x\right)^4=626\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b)
+\(x> 5,5\)
\(=> x - 4,5 > 1\)
\(=>(x -4,5)^4 > 1\)
=> pt vô nghiệm.
+\(x < 4,5
\)
\(=> x - 5,5 < -1\)
\(=>(x - 5,5)^4 > 1\)
=> pt vô nghiệm
+\(4,5 < x < 5,5\)
\(=>(x - 4,5)^4 + (x - 5,5)^4 = (x -4,5)^4 + (5,5 -x)^4 < (x - 4,5 +5,5 -x)^4 = 1\)
vậy chung lại \(x = 4,5\) hoặc \(5,5\) là nghiệm
Áp dụng bảng tam giác Pascal ta có :
\(\left(x-2\right)^4=x^4-8x^3+24x^2-32x+16\)
\(\left(x+2\right)^4=x^4+8x^3+24x^2+32x+16\)
\(\Rightarrow\left(x-2\right)^4+\left(x+2\right)^4=2x^4+48x^2+32=626\)
\(\Leftrightarrow2x^4+48x^2-594=0\)
\(\Leftrightarrow2x^4-6x^3+6x^3-18x^2+66x^2-594=0\)
\(\Leftrightarrow2x^3\left(x-3\right)+6x^2\left(x-3\right)+66\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x^3+6x^2+66x+198\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[2x^2\left(x+3\right)+66\left(x+3\right)\right]\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x+3\right)\left(x^2+33\right)\left(x-3\right)=0\)
\(\Rightarrow x=\pm3\)
Vậy nghiệm \(S=\left\{\pm3\right\}\)