K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Tự chứng minh thì dần dần sẽ quen bạn nhé Chúc bạn may mắn thành công

27 tháng 3 2018

Ta có \(A>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)( 50 số hạng )

=> \(A>\frac{50}{150}=\frac{1}{3}\Rightarrow A>\frac{1}{3}\)          (1)

\(A< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)         ( 50 số hạng )

=> \(A< \frac{50}{100}=\frac{1}{2}\Rightarrow A< \frac{1}{2}\)           (2)

Từ (1) và (2)  => \(\frac{1}{3}< A< \frac{1}{2}\)(đpcm)

29 tháng 4 2015

Ta thấy tổng trên có 50 số hạng .

Ta có:

1/101>1/150

1/102>1/150

...

1/149>1/150

1/150=1/150

=>1/101+1/102+...+1/149+1/150>1/150+1/150+...+1/150

                                                 ---50 số hạng 1/150-------

=>1/101+1/102+...+1/149+1/150>1/150.50

=>1/101+1/102+...+1/149+1/150>50/150

=>1/101+1/102+...+1/149+1/150>1/3

29 tháng 4 2015

em lạy chị Nguyễn Trà My cho em **** đi mà

25 tháng 12 2015

Áp dụng 

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}<\frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

có phải không?

25 tháng 12 2015

trời ơi mk mà lm đc chắc đi thi hsg thế giới mất !!!

25 tháng 12 2015

bạn nhật minh làm rồi mà 

5 tháng 8 2015

Có \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}

5 tháng 8 2015

Vì \(\frac{1}{101}>\frac{1}{102}>...>\frac{1}{200}\) Nên A<\(\frac{1}{101}+\frac{1}{101}+....+\frac{1}{101}\)(100 số hạng ) \(=100.\frac{1}{101}=\frac{100}{101}

14 tháng 4 2016

dãy trên có 200 p/số ghép số đầu với cuối,lần lượt có:

(1/101+1/200)+(1/102+1/199)+(1/103+1/198)+........+(1/149+1/152)+(1/150+1/151)

quy đồng và cộng vào  lên ta có:

S=301/101.200+301/102.199+........+301/150.151

S=301.(1/101.200+1/102.1/199+.....+1/150.151)

số phân số trong ngoặc có 50 phân số nên:

S<301.50.1/101.200

S<301.1/404

S<301/404<303/404=3/4

vậy S<3/4

chúc học tốt

bài này hơi xương nên ủng hộ mik nha TT

Ta có : \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

 \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)\(\left(đpcm\right)\)

5 tháng 6 2016

 ta có 
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12

5 tháng 6 2016

A>7/12