K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7. Cho đường tròn tâm O đường kính AB = 53 cm . C là một điểm trên đường tròn sao cho AC = 45 cm . Gọi H là hình chiếu của C trên AB . Tính BC , AH , BH , CH và OH . 8. Cho hình thang cân ABCD có đáy lớn AB = 15 cm , đáy nhỏ CD = 5 cm và góc A bằng 60 ° . a ) Tính cạnh BC . b ) Gọi M , N lần lượt là trung điểm của AB và CD , Tỉnh MN .9 , Cho tứ giác ABCD có AI ACAD 20 cm , ốc B bằng ( 6 ) " VỀ VỐc A bằng , ly , a ) Tính đường chéo...
Đọc tiếp

7. Cho đường tròn tâm O đường kính AB = 53 cm . C là một điểm trên đường tròn sao cho AC = 45 cm . Gọi H là hình chiếu của C trên AB . Tính BC , AH , BH , CH và OH .

 8. Cho hình thang cân ABCD có đáy lớn AB = 15 cm , đáy nhỏ CD = 5 cm và góc A bằng 60 ° . a ) Tính cạnh BC . b ) Gọi M , N lần lượt là trung điểm của AB và CD , Tỉnh MN .

9 , Cho tứ giác ABCD có AI ACAD 20 cm , ốc B bằng ( 6 ) " VỀ VỐc A bằng , ly , a ) Tính đường chéo BD , b ) Tính khoảng cách B và DK từ hai điểm B và D đến AC . c ) Tính HK , d ) Vẽ BE vuông gốc với DC kéo dài . Tính BE , CE , DC

10. Cho đoạn thẳng AB 2a . Từ trung điểm 0 của AB về Ox vuông vỐC với AB . Trên 9x a lấy điểm D sao cho OD Tu B ve BC 2 vuông góc với AD kéo dài , a ) Tính AD , AC và BC theo a , b ) Kéo dài DO một đoạn OE = a , Chứng minh bốn điểm A , C , B , E cùng nằm trên một đường tròn . c ) Vẽ đường vuông góc với BC tại B cắt CE tại F. Tính BF . d ) Gọi P là giao điểm của AB và CE , Tính AP và BP .

11.Cho tam giác ABC cân tại A có BC 16 cm , AH = 6 cm . Về điểm D trên đoạn BH sao cho BD = 3,5 cm . Chứng minh rằng tam giác DAC vuông .

0
24 tháng 11 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét tam giác ACB vuông tại C, CH là đường cao nên :

AH.AB = A C 2

Xét tam giác ABE vuông tại A, AC là đường cao nên :

EC.BC =  A C 2

⇒ AH.AB = EC.BC

3 tháng 5 2018

a. Ta có: \(\widehat{ADB}=90^o\)(góc nội tiếp chắn nửa đường tròn) => \(\widehat{ADE}=90^o\)

Lại có: \(CH\perp AB\)tại H (gt)  mà E \(\in CH\)(do  E là giao điểm của BD và CH (gt)) => \(\widehat{EHA}=90^o\) 

Xét tứ giác ADEH có: \(\widehat{ADE}+\widehat{EHA}=90^o+90^o=180^o\)=> tứ giác ADEH nội tiếp (DHNB) => đpcm

b.

Ta có: \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nữa đường tròn) => \(\Delta ABC\)vuông tại C

=> \(S\Delta ABC=\frac{1}{2}AC\times BC=\frac{1}{2}CH\times AB\)=> CH = \(\frac{AC\times BC}{AB}\)

=> \(AC\times AH+CB\times CH=AC\times AH+CB\times\frac{AC\times BC}{AB}\)\(AC\times(AH+\frac{BC^2}{AB})=AC\times\frac{(AH\times AB+BC^2)}{AB}\)(1)

Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại C với đường cao CH ta được: AH \(\times AB=AC^2\)(2)

Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại C ta được: \(AC^2+BC^2=AB^2\)(3)

Thế (2) và (3) vào (1) ta được : \(AC\times AH+CB\times CH=AB\times AC\)(ĐPCM)

c. Gọi K là điểm chính giữa cung AB (K nằm cùng phía với C so với bờ AB) => K là điểm cố định và \(KO\perp AB\)tại O => KO // CH => \(\widehat{KOC}=\widehat{KOM}=\widehat{HCO}\)(So le trong)

Nối K với M 

Xét \(\Delta KOM\)và \(\Delta OCH\)có:

+ KO = OC = R

\(\widehat{KOM}=\widehat{HCO}\)(cmt)

+ OM = CH (gt) 

=> \(\Delta KOM=\Delta OCH\)(c.g.c) => \(\widehat{KMO}=\widehat{OHC}=90^o\Rightarrow\Delta KOM\)vuông tại M => M \(\in(I,\frac{OK}{2})\)cố định (trong đó I là trung điểm của OK)

18 tháng 5 2022

Tham khảo( bỏ câu C đị ạ)

undefined

18 tháng 5 2022

refer

undefined

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái