Cho một số có 3 chữ số là abc ( a;b;c khác nhau và khác 0)
Nếu đổi chỗ các chữ số cho nhau ta được 1 số mới . Hỏi có tất cả bao nhiêu số có 3 chữ số như vậy
( Kể cả số ban đầu)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gia su a=5 c=1 b=0 thi hieu la:
501-105=396
Dap so : 396
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Ta có số cần tìm là abc.
abc khác 0 nên abc là các chữ số từ 1 đến 9.
a có 9 cách chọn.
b có 8 cách chọn. ( b khác a)
c có 7 cách chọn. ( c khác a và b )
Vậy ta lập được các số là:
9 x 8 x 7 = 504 ( số )
Đáp số : 504 số
Để chọn chữ số hàng trăm ta có \(3\)cách chọn (\(a,b,c\))
Để chọn chữ số hàng chục ta có \(2\)cách chọn. (\(a,b,c\)loại đi chữ số ở hàng trăm)
Để chọn chữ số hàng đơn vị ta có \(1\)cách chọn. (chữ số còn lại)
Do đó có tất cả số số có ba chữ số như vậy là: \(3\times2\times1=6\)số.
abc+cba=a0c+c0a+10b+10b=909+20b
909+20b là 1 số có 3 chữ số =>20b<100
=>b<5 =>b=0;1;2;3;4
vậy b=0;1;2;3;4
3:
Ta sẽ chia M ra làm 3 nhóm
Nhóm 1: \(A=\left\{0;3;6\right\}\)
Nhóm 2: \(B=\left\{1;4;7\right\}\)
Nhóm 3: \(C=\left\{2;5;8\right\}\)
TH1: 1 số A,1 số B, 1 số C
*Nếu số ở A chọn là số 0 thì sẽ có 3*3*2*2*1=36 cách
*Nếu số A chọn khác 0 thì sẽ là 2*3*3*3!=108 cách
=>Có 108+36=144 cách
TH2: 3 số A
=>Có 2*2*1=4 số
TH3: 3 số B
=>Có 3!=6 số
TH4: 3 số C
=>Có 3!=6 số
=>Có 144+4+6+6=148+12=160 số
abc+cba=a0c+c0a+10b+10b=909+20b
909+20b là 1 số có 3 chữ số =>20b<100
=>b<5 =>b=0;1;2;3;4
vậy b=0;1;2;3;4
abc; acb; bac; bca; cab; cba => có tất cả 6 số
Có 3 cách chọn chữ số thứ nhất
Có 2 cách chọn chữ số thứ hai
Có 1 cách chọn chữ số thứ ba
=> Có tất cả
3 x 2 x 1 = 6 ( số )