Cho tam giác ABC cân tại A lớn hơn( 90 ) . Hai đường cao BD và CE cắt nhau tại H a) Chứng minh tam giác BEC băng tam giác CDB.Từ đó chứng minh tam giác BHC cân tại H. b) Từ C kẻ đường thẳng d vuông góc với AC d, cắt đường thẳng AH tại F . Chứng minh CB là tia phân giác của ; c) Giả sử gócBACbằng 60 ; AB bằng 6cm cm Tính khoảng cách từ điểm B đến đường thẳng CF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bạn ghi sai rồi, phải là BD và CE chứ
a)Tam giác BEC và CDB có:
Góc E=D=90 độ
BC cạnh chung
Góc B=C(tam giác ABC đều)
vậy tam giác BEC=CDB(Cạnh huyền-góc nhọn)
b) Vì tam giác BEC=CDB => BE=CD(cạnh tương ứng)
mà BE+AE=CD+AD
Từ hai điều này suy ra AE=AD. nên tam giác AED cân tại A, lại có góc A bằng 60 độ, nên tam giác AED là tam giác đều
=> Góc AED=60 độ.
c) ta có Góc AED=ABC=60 độ
mà chúng ở vị trí đồng vị nên ED//BC.
Tứ giác BEDC có ED//BC vậy BEDC là hình thang.
Hình thang BEDC có 2 góc kề đáy góc B=C=60 độ
Vậy BEDC là hình thang cân.
d) Xét tam giác ABI và ACI có:
B=C=90 độ
AI cạnh chung
AB=AC
Vậy Tam giác ABI=ACI(Cạnh huyền-cạnh góc vuông)
=>IB=IC hay I thuộc đường trung trực của BC (1)
Tam giác ABC đều, có AH là đường cao nên đồng thời cũng là trung trực của BC (2)
từ (1) và (2) suy ra A, H, I thuộc đường trung trực của BC hay A, H, I thẳng hàng.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
CB chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: Xét ΔHBC có góc HCB=góc HBC
nên ΔHBC cân tại H
c: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH làphân giác của góc BAC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BD=CE
BC chung
Do đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Xét ΔABC có
AE/AB=AD/AC
Do đó: DE//BC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD
Bạn tự vẽ hình ik nha
a. Xét tam giác ABD và tam giác ACE có:
góc D = góc E = 90* (gt)
AB = AC (gt)
góc A chung
=> tg ABD = tg ACE (c. huyền-g. nhọn)
b. Vì H là giao điểm của 2 dường cao BD và CE
Nên AH cũng là đường cao cùa tg ABC hay AH vuông góc BC
Do tg ABC là tam giác cân => AI là đường cao đồng thời cũng là dường trung tuyến => BI = CI => I là trung điểm của BC
c.Ta có: góc ACE = góc ABD (doc tg ABD = tg ACE)
và góc ABC = góc ACB
=> góc DBC = góc ECB
Ta có: BD vuông góc AC (gt)
CF vuông góc AC (gt)
=> CF song song BD (2 dường thẳng cùng vuông góc với 1 dường thẳng)
=> góc DBC = góc BCF ( so le trong)
Mà góc DBC = góc ECB
=> góc ECB = góc BCF
=> BC lá tia phân giác của góc ECF