K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

1.
A= \(2\sqrt{6}\) + \(6\sqrt{6}\) - \(8\sqrt{6}\)
A= 0
2.
A= \(12\sqrt{3}\) + \(5\sqrt{3}\) - \(12\sqrt{3}\)
A= 0
3.
A= \(3\sqrt{2}\) - \(10\sqrt{2}\) + \(6\sqrt{2}\)
A= -\(\sqrt{2}\)
4.
A= \(3\sqrt{2}\) + \(4\sqrt{2}\) - \(\sqrt{2}\)
A= \(6\sqrt{2}\)
5.
M= \(2\sqrt{5}\) - \(3\sqrt{5}\) + \(\sqrt{5}\)
M= 0
6.
A= 5 - \(3\sqrt{5}\) + \(3\sqrt{5}\)
A= 5

This literally took me a while, pls sub :D
https://www.youtube.com/channel/UC4U1nfBvbS9y_Uu0UjsAyqA/featured

DD
22 tháng 1 2021

\(A=\frac{1}{1\left(2n-1\right)}+\frac{1}{3\left(2n-3\right)}+...+\frac{1}{\left(2n-1\right).1}\)

\(A=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)

\(A=\frac{1}{2n}\left[\frac{1}{1}+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-1}+\frac{1}{1}\right]\)

\(A=\frac{1}{n}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)

\(\Rightarrow\frac{a}{b}=\frac{1}{n}\).

\(=9^n-9^n-1\cdot3+1\cdot3^n=3^n-3\)

DD
22 tháng 1 2021

\(\frac{1}{1.\left(2n-1\right)}+\frac{1}{3.\left(2n-3\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}\)

\(=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{3+2n-3}{\left(2n-3\right).3}+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)

\(=\frac{1}{2n}\left(1+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-3}+\frac{1}{3}+\frac{1}{2n-1}+1\right)\)

\(=\frac{1}{n}\left(1+\frac{1}{3}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{1}{n}\).

27 tháng 8 2020

A = 8n+1 - 23( 8n - 3 )

= ( 23 )n+1 - 23[ ( 23 )n - 3 ]

= 23n+3 - 23( 23n - 3 )

= 23n+3 - 23n+3 + 23.3

= 23.3 = 24

B = 9n - 32n-1( 3 + 3n )

= ( 32 )n - 32n - 33n - 1

= 32n - 32n - 33n - 1

= -33n-1