K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

Từ x-y=2=>x=y+2

a)Thay x=y+2 vào P ta có:

\(P=xy+4=\left(y+2\right)y+4=y^2+2y+4=\left(y^2+2y+1\right)+3=\left(y^2+2.y.1+1^2\right)+3\)

\(=\left(y+1\right)^2+3\ge3\) với mọi y

Dấu "=" xảy ra <=> \(\left(y+1\right)^2=0\) <=> \(y=-1\) <=> \(x=1\)

Vậy...........

b)Thay x=y+2 vào Q ta có:

\(Q=x^2+y^2-xy=\left(y+2\right)^2+y^2-\left(y+2\right).y=y^2+4y+4+y^2-y^2-2y\)

\(=y^2-2y+4=\left(y^2-2y+1\right)+3=\left(y^2-2.y.1+1^2\right)+3=\left(y-1\right)^2+3\ge3\) với mọi y

Dấu "=" xảy ra <=> y=1 <=> x=2

Vậy.................

14 tháng 3 2017

Vì x-y=2 => y=x-2

=> A=x(x-2)+4=x2-2x+4=x2-2x+1+3=(x-1)2+3>=3

     B=x2-2xy+y2+xy=(x-y)2+xy=4+xy>=3

21 tháng 10 2018

Lamborghini Aventardo VSJ chứ

21 tháng 10 2018

Giải được một bài thôi,bạn thông cảm!

b)Ta có:  \(Q_{min}=x^2+y^2-xy=x^2-xy+y^2=\left(x-y\right)^2=2^2=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

19 tháng 6 2016

Bài 1: Sử dụng phép thế

Có x - y = 2 => x = 2 + y

Thay x = 2 + y vào các biểu thức cần tính

Bài 2:

\(P=9-2\left|x-3\right|\le9\) dấu bằng <=> x = 3

\(Q=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\) dấu bằng <=> \(\left(x-2\right)\left(8-x\right)\ge0\)

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t