\(\dfrac{2}{3.5}+\dfrac{2}{5.7}\dfrac{2}{7.9}+.........+\dfrac{2}{99.101}\)
\(P=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{13}-\dfrac{1}{15}\)
(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)
\(=\dfrac{1}{3}-\dfrac{1}{15}=\dfrac{4}{15}\)
Chúc bạn học tốt!!!
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\)
= \(\dfrac{1}{3}-\dfrac{1}{15}\)
= \(\dfrac{4}{15}\)
d) Ta có: \(x+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}=\dfrac{-37}{45}\)
\(\Leftrightarrow x+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{-37}{45}\)
\(\Leftrightarrow x+\dfrac{1}{5}-\dfrac{1}{45}=\dfrac{-37}{45}\)
\(\Leftrightarrow x=\dfrac{-37}{45}+\dfrac{1}{45}-\dfrac{1}{5}=\dfrac{-36}{45}-\dfrac{1}{5}=\dfrac{-4}{5}-\dfrac{1}{5}=-1\)
Vậy: x=-1
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{39}\)
tính
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{39}\)
\(=(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13})+\dfrac{2}{39}\)
\(=(\dfrac{1}{3}-\dfrac{1}{13})+\dfrac{2}{39}\)
\(=\dfrac{10}{39}+\dfrac{2}{39}\)
\(=\dfrac{4}{13}\)
gọi biểu thức đó là A
A=\(1.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)+\dfrac{2}{39}\)
A= \(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)+\dfrac{2}{39}=\dfrac{4}{13}\)
mk nhanh nhất nha bạn
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2\cdot\dfrac{98}{303}=\dfrac{196}{303}\)
`2/(3.5)+2/(5.7)+....+2/(2015.2017)`
`=1/3-1/5+1/5-1/7+....+1/2016-1/2017`
`=1/3-1/2017=2014/6051`
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)
\(=\dfrac{1}{3}-\dfrac{1}{2017}\)
\(=\dfrac{2017}{6051}-\dfrac{3}{6051}=\dfrac{2014}{6051}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2020.2022}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}\)
\(=\dfrac{2021}{2022}\)
\(1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-...-\dfrac{2}{61.63}-\dfrac{2}{63.65}\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)
\(=1-\dfrac{62}{195}\)
\(=\dfrac{133}{195}\)
\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.100}\)
\(B=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99.100}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{3}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B=\dfrac{1}{3}-\dfrac{2}{100}+\dfrac{1}{99}\)
\(B=\dfrac{1}{3}-\dfrac{1}{50}+\dfrac{1}{99}\)
Đến đây thì hết tính hợp lý được rồi:v
\(B=\dfrac{34}{99}-\dfrac{1}{50}\)
\(B=\dfrac{1601}{4950}\)
Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)