Viết đa thức sau dưới dạng tổng:
(x+y+z+t).(x+y-z-t)
(làm giải thích luôn ạ, cảm ơn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + y + z +t )( x + y - z - t)
= ( x + y)^2 - ( z + t)^2
= x^2 + 2xy + y^2 - z^2 - 2zt - t^2
\(\left(x+y+z\right)^2\)
\(=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+y^2+z^2+2xy+2yz+2xz\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
Ta có:\(\left(x-y+z\right)\left(x+y+z\right)=\left[\left(x+z\right)-y\right]\left[\left(x+z\right)+y\right]\)
\(=\left(x+z\right)^2-y^2=x^2-2xz+z^2-y^2\)
Xong rồi đấy,chúc bạn học tốt
a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)
\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)
\(=\left(a^2\right)^2-\left(2a+3\right)^2\)
\(=a^4-\left(2a+3\right)^2\)
b: \(\left(-a^2-2a+3\right)^2\)
\(=\left(a^2+2a-3\right)^2\)
\(=a^4+4a^2+9+4a^3-18a-6a^2\)
\(=a^4+4a^3-2a^2-18a+9\)
c: \(\left(x-y-z\right)^2\)
\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)
\(=x^2-2xy-2xz+y^2+2yz+z^2\)
d: \(\left(x+y+z\right)\left(x-y-z\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=x^2-y^2-2yz-z^2\)
`(x+y+z+t)(x+y-z-t)`
`=[(x+y)+(z+t)][(x+y)-(z+t)]`
`=(x+y)^2-(z-t)^2`
`=(x+y)^2+[-(z-t)^2]`
cảm ơn bạn nhiều <3