8. Tìm x,y ϵ Z.
c) \(\dfrac{x}{2}+\dfrac{1}{y}=\dfrac{1}{3}\) d) 4x-5⋮2x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
b) Ta quy đồng rồi => x+xy = 4
=> x(y+1) = 4 thì 1/x−y/2=1/4
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
\(y=\dfrac{2\left(2x+5\right)-18}{2x+5}=2-\dfrac{18}{2x+5}\)
\(y\in Z\Rightarrow\dfrac{18}{2x+5}\in Z\Rightarrow2x+5=Ư\left(18\right)\)
Mà 2x+5 luôn lẻ nên ta có: \(2x+5=\left\{-9;-3;-1;1;3;9\right\}\)
2x+5 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -7 | -4 | -3 | -2 | -1 | 2 |
y | 4 | 8 | 20 | -16 | -4 | 0 |
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
Lời giải:
$\frac{1}{x}+\frac{1}{y}=\frac{1}{8}$
$\Rightarrow \frac{x+y}{xy}=\frac{1}{8}$
$\Rightarrow 8(x+y)=xy$
$\Rightarrow xy-8x-8y=0$
$\Rightarrow x(y-8)-8(y-8)=64$
$\Rightarrow (x-8)(y-8)=64$
Do $x,y$ tự nhiên nên $x-8,y-8\in\mathbb{Z}$
$\Rightarrow x-8$ là ước của $64$. Mà $x-8>-8$ với mọi $x\in\mathbb{N}^*$ nên:
$x-8\in\left\{1; 2; 4; 8; 16; 32; 64; -1; -2; -4\right\}$
Đến đây bạn chỉ cần chịu khó xét các TH là được.
c, x/2+1/y=1/3 (x,y∈Z)
⇒1/y=1/3-x/2
⇒1/y=2-3x/6
⇒y(2-3x)=6
⇒y∈Ư(6)∈{1;-1;2;-2;3;-3;6;-6}
1
Vậy các cặp (x;y) thỏa mãn pt trên là (0;3);(1;-6)
d, 4x-5⋮2x+1 (x∈Z)
⇒4x-5-2(2x+1)⋮2x+1
⇒-7⋮2x+1
⇒2x+1∈Ư(-7)∈{1;-1;7;-7}
Ta lập bảng
Vậy với x=-4;x=0;x=1;x=3 thì thỏa mãn pt trên