K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2015

BĐT đã cho <=> 1 + y \(\ge\) 4.(1 - x).(1 - y).(1 - z)

Áp dụng BĐT :  4ab \(\le\) (a + b)ta có: 4.(1 - x)(1 - z) \(\le\) (1 - x + 1 - z)2 = (1 + y)2

=> 4.(1 - x)(1 - y)(1 - z) \(\le\) (1 + y)2.(1 - y) = (1 + y).(1 -y2\(\le\) (1 + y) .1 = 1+ y => đpcm

Dấu "=" xảy ra khi 1 - y= 1 và x = z => y = 0 ; x = z = 1/2

26 tháng 8 2015

Áp dụng bất đẳng thức quen thuộc \(4xy\le\left(x+y\right)^2\), cho ta

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(1-x\right)\left(1-z\right)\cdot\left(1-y\right)\)

\(\le\left(1-x+1-z\right)^2\cdot\left(1-y\right)=\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\)

\(\le1+y=x+2y+z.\)
 

19 tháng 8 2017

Chứng minh $x+2y+z\geq 4(1-x)(1-y)(1-z)$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

NV
24 tháng 1 2022

\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)

\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)

\(=x+\sqrt{xyz}\)

Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)

\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)

26 tháng 7 2017

pt cái (x+y)(y+z)(z+x)=\(2xyz+z^2\left(x+y\right)+x^2\left(y+z\right)+y^2\left(x+z\right)\)

xét hiệu \(\left(x+y\right)\left(y+z\right)\left(x+z\right)-2\left(1+x+y+z\right)=2xyz+z^2\left(x+y\right)+y^2\left(x+z\right)+x^2\left(y+z\right)-2xyz-\left(x+y\right)-\left(y+z\right)-\left(x+y\right)\)\(z^2\left(x+y\right)\ge\left(x+y\right)\)(vì x;y;z>0)

tương tự 

=> đpcm

28 tháng 8 2021

Dễ thì giải đi bn

28 tháng 8 2021

mik tik rồi đó

7 tháng 2 2020

Ta có: \(x+y+z=1\) nên:

\(\Rightarrow y+z=1-x\)

Thay \(y+z=1-x\) và áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) ta được:

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2\left(1-y\right)\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)

\(\Rightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1+y=x+2y+z\left(đpcm\right)\)

7 tháng 2 2020

cauchy hả ủa mà chế học lớp 9 òi à

NV
13 tháng 5 2020

Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow z-y=a-b\)\(ab=1\)

\(VT=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}\)

\(VT=a^2+b^2+\frac{1}{\left(a-b\right)^2}=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2ab=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)

\(VT\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)\left(x-z\right)=1\\\left(y-z\right)^2=1\end{matrix}\right.\)