1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + .... + 1/99x100
giúp mk nha. mk mới làm được ba bước đầu nhưng chưa biết làm tiếp .bạn nào làm được giải cả bài giùm mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-25\right):15=20\)
\(\Rightarrow x-25=20\times15\)
\(\Rightarrow x-25=300\)
\(\Rightarrow x=300+25\)
\(\Rightarrow x=325\)
Vậy x = 325
b) \(3\times x-25=80\)
\(\Rightarrow3\times x=80+25\)
\(\Rightarrow3\times x=105\)
\(\Rightarrow x=105:3\)
\(\Rightarrow x=35\)
Vậy x = 35
c) \(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{2}-\frac{1}{100}\)
\(S=\frac{49}{100}\)
Vậy \(S=\frac{49}{100}\)
_Chúc bạn học tốt_
gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
**** nha ^^
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
Sử dụng công thứ \(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
c)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{20}{21}\)
\(=\frac{10}{21}\)
\(A\)= \(\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\)\(\frac{1}{3}-\frac{1}{50}=\frac{50}{150}-\frac{3}{150}=\frac{47}{150}\)
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+............+1/9+1/10
=1-1/10
=10/10-1/10
=9/10
Bài làm:
\(\frac{1}{1\times2}+\frac{1}{2\times3}\)\(+\frac{1}{3\times4}+\frac{1}{4\times5}\)\(+...\frac{1}{9\times10}\)
\(=\frac{1}{1}-\frac{1}{2}\)\(+\frac{1}{2}-\frac{1}{3}\)\(+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}\)\(-\frac{1}{5}\)\(+...\frac{1}{9}-\frac{1}{10}\)
\(=\)\(\frac{1}{1}-\frac{1}{10}\)
\(=\frac{9}{10}\)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+......+1/999-1/1000+1
=1-1/1000+1 (-1/2+1/2=0, -1/3+1/3=0. nên chỉ còn lai các số ko cùng cặp)
=999/1000+1
=1999/1000
Đáp án là 1999/1000
Mình không thể viết cách giải dc vì giải lâu lắm!
Vậy nha, chúc bạn may mắn
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)\(\frac{1}{100}\)
A = \(1-\frac{1}{100}\)
A = \(\frac{100}{100}-\frac{1}{100}\)
A = \(\frac{99}{100}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
b) \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)\(=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{110}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
c) \(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}\) \(=\frac{13-11}{11.13}+\frac{15-13}{13.15}+\frac{17-15}{15.17}+...+\frac{99-97}{97.99}\)
\(=\frac{1}{11}+\frac{1}{13}-\frac{1}{13}+\frac{1}{15}-\frac{1}{15}+\frac{1}{17}...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{11}-\frac{1}{99}=\frac{8}{99}\)
Bài này khi sáng mình mới học 100% là đúng luôn.
1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + ........... + 1/99x100.
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+..........1/98-1/99+1/99-1/100.
=1/1-1/100=99/100.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)