tìm hai chữ số biết rằng lấy số đó chia cho tổng các chữ số của nó được thương là 5 dư 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là ab.theo bài ra ta có:
ab=(a+b)5+12
=>10a+b=5a+5b+12
=>10a-5a=5b-b+12
=>5a=4b+12=4(b+3) chia hết cho 5
=>b+3 chia hết cho 5
=>b+3=5;10
=>b=2;7
b=2=>a=4
b=7=>a=8
vậy ab=87;42
1) gọi số đó là ab ( a khác 0 ; a; b là chữ số)
Theo bài cho: ab = 5(a+ b) => 10a + b = 5a + 5b => 10a - 5a = 5b - b => 5a = 4b
Chỉ có a = 4; b = 5 thỏa mãn
Vậy số đó là 45
2) Gọi số đó là ab
ta có: ab : (a + b) = 5 (dư 12)
=> ab = 5(a + b) + 12
=> 10a + b = 5a + 5b + 12
=> 5a = 4b + 12
Vì 4b + 12 chia hết cho 4 nên a chia hết cho 4 => a = 4 hoặc a = 8
a = 4 => b = 2
a = 8 => b = 7
Vậy số đó là 42 hoặc 87
Bài 1 :
Gọi số có hai chữ số cần tìm là ab
Theo bài ra ta có : ab = 5 . ( a + b )
a. 10 + b = 5a + 5b
5a + 5a + b . 1 = 5a + 4.b + b.1
Bớt cả hai bên cho 5a và 1b ta được :
5a = 4b
=> 5a là số chia hết cho 4 mà a là chữ số nên 5a = 20 => a = 4 => b = 5
Vậy số cần tìm là 45
1)
Gọi số có hai chữ số đó là \(\overline{ab}\)\(\left(0\le b\le9,0< a\le9,a;b\in N\right)\)
Theo bài ra, ta có:
\(\overline{ab}:a=11\)dư \(2\)
\(\Rightarrow\overline{ab}=11.a+2\)
\(\Leftrightarrow a.10+b=a.11+2\)
\(\Leftrightarrow b=a+2\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(1;3\right);\left(2;4\right);\left(3;5\right)\left(4;6\right);\left(5;7\right);\left(6;8\right);\left(7;9\right)\right\}\)
Vậy \(\overline{ab}\in\left\{13;24;35;46;57;68;79\right\}.\)
2)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:b=12\)dư \(3\)
\(\Rightarrow\overline{ab}=12.b+3\)
\(\Rightarrow a.10+b=b.12+3\)
\(\Rightarrow a.10=b.11+3\)
Do \(a.10⋮10\)mà \(3:10\)dư \(3\)\(\Rightarrow b.11:10\)dư \(7\)
\(\Rightarrow b=7\)
\(\Rightarrow a.10=7.11+3\)
\(\Rightarrow a.10=80\)
\(\Rightarrow a=80:10=8\)
Vậy số đó là \(87.\)
3)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:b=9\)
\(\Rightarrow a.10+b=b.9\)
\(\Rightarrow a.10=b.8\)
\(\Leftrightarrow5.a=4.b\)
\(\Rightarrow\hept{\begin{cases}a=4\\b=5\end{cases}}\)
Vậy số đó là \(45.\)
4)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:a=12\)
\(\Rightarrow a.10+b=a.12\)
\(\Rightarrow b=2.a\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(1;2\right);\left(2;4\right);\left(3;6\right);\left(4;8\right)\right\}\)
Vậy \(\overline{ab}\in\left\{12;24;36;48\right\}.\)
5)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:\left(a+b\right)=5\)dư \(12\) \(\Rightarrow a+b>12\)( * )
\(\Rightarrow\overline{ab}=5.\left(a+b\right)+12\)
\(\Rightarrow10.a+b=5.a+5.b+12\)
\(\Rightarrow5a=4b+12\)
Do \(4b⋮4;12⋮4\Rightarrow5a⋮4\)
Mà \(\left(5,4\right)=1\Rightarrow a⋮4\)
\(\Rightarrow a\in\left\{4;8\right\}\)
+ Nếu \(a=4\):
\(\Rightarrow5.4=b.4+12\)
\(\Rightarrow5=b+3\)
\(\Rightarrow b=5-3=2\)
Khi đó : \(a+b=4+2< 12\)( mâu thuẫn với (*) )
+ Nếu \(a=8\):
\(5.8=4.b+12\)
\(\Rightarrow5.2=b+3\)
\(\Rightarrow b=10-3=7\)
Khi đó : \(8+7=15>12\)( hợp lý với ( * ) )
Vậy số đó là \(87.\)
VIẾT KẾT QUẢ SAU DƯỚI DẠNG LUỸ THỪA
16 MŨ 6 :4 MŨ 2...................................................................
17 MU 8 :9 MŨ 4 ..................................................................
125 MŨ 4 ;25 MŨ 3................................................................
4 MŨ 14 NHÂN 5 MŨ 28.........................................................
12 MŨ n : 2 MŨ 2 n
Giải: Gọi số cần tìm là . Theo đề bài ta có:
ab = 5 x (a + b) + 12
a x 10 + b = 5 x a + 5 x b + 12
a x 10 – 5 x a = 5 x b – b + 12
5 x a = 4 x b + 12 (1)
Do 5 x a phải chia hết cho 4 nên a = 4 (hoặc a = 8). Từ (1) ta có:
- Nếu a = 4 thì b = 2 => ab = 42
- Nếu a = 8 thì b = 7 => ab = 87
Nhận xét: Một lần nữa ở bài này chúng ta lại thấy việc nhận xét chia hết cho 4 ở biểu thức 5 x a = 4 x b + 12 là khá quan trọng. Một cách rất tự nhiên đó là khi chúng ta biến đổi nhận được 1 biểu thức, chúng ta thường hay cố gắng giản ước, triệt tiêu cả hai vế. Ở đây, việc xét chia hết cũng xuất phát từ suy nghĩ đó. Ví dụ ở biểu thức trên, khi ta cố gắng giản ước 2 vế sẽ nhận ra rằng vế phải có 2 số 4 và 12 có thể rút gọn đi 4 lần, trong khi vế trái không chứa thừa số 4, vì thế số a phải chia hết cho thừa số 4 đó.
Chú ý:
1. Phân tích cấu tạo số, biến đổi thành biểu thức mà 2 vế chứa các chữ số cần tìm.
2. Rút gọn 2 vế nếu có thể, sau khi không thể rút gọn được, hãy nghĩ đến xét chia hết hoặc chia có dư của mỗi vế khi cùng chia cho 1 số nào đó.
Gọi số đó là ab(ngang). Ta có :
ab(ngang) : (a+b) = 5 dư 12
<=> 10a+b = 5a+5b+12
<=> 10a-5a=5b-b+12
<=> 5a = 4b + 12
Vì a,b \(\in\) N, a \(\ne\) 0 nên suy ra a=8;b=7.
sorry,mình nhầm
gọi số cần tìm là ab.theo bài ra ta có:
ab=(a+b)5+12
=>10a+b=5a+5b+12
=>10a-5a=5b-b+12
=>5a=4b+12=4(b+3) chia hết cho 5
=>b+3 chia hết cho 5
=>b+3=5;10
=>b=2;7
b=2=>a=4
b=7=>a=8
vậy ab=87;42