K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 7 2021

\(\left(2x-1\right)x>0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\2x-1>0\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\2x-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x>\frac{1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow x>\frac{1}{2}\)hoặc \(x< 0\).

Để(x-1/3)/(1,75-x)>0 thì:

  • x-1/3 và 1,75-x cùng dấu
  • \(\hept{\begin{cases}x-\frac{1}{3}\ne0\\1,75-x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne1,75\end{cases}}}\)
3 tháng 1 2022

\(\left(2x-1\right)^3=\dfrac{8}{125}\)

\(\left(2x-1\right)^3=\pm\left(\dfrac{2}{5}\right)^3\)

\(\text{Vậy }2x-1=\dfrac{2}{5}\)

       \(2x\)        \(=\dfrac{2}{5}+1=\dfrac{7}{5}\)

        \(x\)         \(=\dfrac{7}{5}.\dfrac{1}{2}=\dfrac{7}{10}\)

\(\text{hoặc }2x-1=\dfrac{-2}{5}\)

        \(2x\)        \(=\left(\dfrac{-2}{5}\right)+1=\dfrac{3}{5}\)

         \(x\)         \(=\dfrac{3}{5}.\dfrac{1}{2}=\dfrac{3}{10}\)

\(\Rightarrow x\in\left\{\dfrac{7}{10};\dfrac{3}{10}\right\}\)

4 tháng 2 2018

vẽ hệ trục tọa dộ oxy và danh dau cac điểm A(-2,3): B(6;-1); (4;-5); D(-4;-1)

a, Có thể nói DB// trục hoành duoc không?

b Từ A va C ta có thể vẽ nhngx duong thag song song truc tung nó cat BD lần lượt ở M va N

CM:Tam giac ADM = tam giác CBN ; TAm giác ABM =mTAm giác CDN

c, CM: AD//BC; AB//DC

4 tháng 2 2018

đó là câu hỏi tiếp theo đó bạn đừng có ấn lung tung

14 tháng 6 2019

\(\left(x-\frac{1}{2}\right)\left(x+\frac{3}{4}\right)>0\)

th1 : 

\(\hept{\begin{cases}x-\frac{1}{2}>0\\x+\frac{3}{4}>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>-\frac{3}{4}\end{cases}\Rightarrow}x>\frac{1}{2}}\)

th2 : 

\(\hept{\begin{cases}x-\frac{1}{2}< 0\\x+\frac{3}{4}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< -\frac{3}{4}\end{cases}\Rightarrow}x< -\frac{3}{4}}\)

24 tháng 8 2018

A=\(\frac{x^2y^2+x^2z^2+y^2z^2}{x^2y^2z^2}\)

Ta có:\(x^2y^2+x^2z^2+y^2z^2=\left(xy+yz+zx\right)^2-2\left(xyz\right)\left(x+y+z\right)\)

\(=\left(xy+yz+zx\right)^2\)(do x+y+z=0)

Do đó A=\(\frac{\left(xy+yz+zx\right)^2}{\left(xyz\right)^2}=\left[\frac{\left(xy+yz+zx\right)}{xyz}\right]^2\)

Nên A là số chính phương(ĐCCM)