Lập công thức tổng quát tính tổng: \(C_n^0+C_n^1+...+C^k_n\). (với \(k,n\in\mathbb{N*};k\leq n\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(Q=C^1_n+2\dfrac{C_n^2}{C_n^1}+...+k\dfrac{C^k_n}{C_n^{k-1}}+...+n\dfrac{C^n_n}{C_n^{n-1}}\)
\(\Leftrightarrow Q=\dfrac{n!}{1!\left(n-1\right)!}+2\dfrac{1!\left(n-1\right)!}{2!\left(n-2\right)!}+...+k\dfrac{\left(k-1\right)!\left(n-k+1\right)!}{k!\left(n-k\right)!}+...+\dfrac{n\left(n-1\right)!1!}{n!}\)
\(\Leftrightarrow Q=n+\dfrac{2\left(n-1\right)}{2}+...+\dfrac{k\left(n-k+1\right)}{k}+...+\dfrac{n}{n}\)
\(\Leftrightarrow Q=n+\left(n-1\right)+...+\left(n-k+1\right)+...+1\)
\(\Leftrightarrow Q=n^2-\left(1+\left(1+1\right)+\left(1+2\right)+...+\left(n-1\right)\right)\)
Lời giải:
Áp dụng đẳng thức quen thuộc \(C^k_n+C^{k+1}_n=C^{k+1}_{n+1}\) ta được:
\(\sum \limits_{n=4}^{11}C^4_n=C^4_4+\sum \limits_{n=5}^{11}C^4_n=1+\sum \limits_{n=5}^{11}(C^5_{n+1}-C^5_n)\)
\(=1+(C^5_6+C^5_7+..+C^5_{12})-(C^5_5+C^5_6+...+C^5_{11})\)
\(=1+C^5_{12}-C^5_5=C^5_{12}=792\)
Xét tập A có n phần tử
Ta sẽ đếm số tập con của chúng bằng hai cách:
-Cách 1:
+Số tập con có 0 phần tử là: \(C^0_n\) tập
+Số tập con có 1 phần tử là: \(C^1_n\) tập
...
+Số tập con có 0 phần tử là: \(C^n_n\) tập
Khi đó vế trái của đẳng thức cần chứng minh là tổng số tập con của tập đó
Cách 2: Xét tập B là tập con của tập A
Một phần tử i bất kì thuộc A có thể thuộc B hoặc không thuộc B nên phần tử i đó có 2 khả năng xảy ra. Làm tương tự với n-1 phần tử còn lại thì vế phải của đẳng thức cần chứng minh là số tập con của tập A
Ta chứng minh bằng quy nạp.
Ta thấy công thức trên đúng với n = 1.
Giả sử nó đúng đến n. Ta chứng minh nó đúng với n + 1.
Nhận thấy VT là số tập hợp con của một tập hợp có n phần tử.
Nếu ta thêm 1 phần tử thì số tập hợp con tăng thêm chính bằng số tập hợp con của tập hợp đó.
Do đó số tập hợp con của một tập hợp có n + 1 phần tử là: \(2^n+2^n=2^{n+1}\).
Vậy công thức trên đúng với n + 1. Phép cm hoàn tất.
Giả sử có 1 nhóm người gồm 2n người, trong đó có n nam và n nữ.
Chọn n người từ 2n người đó, ta thực hiện theo 2 cách:
- Cách 1: chọn bất kì, có \(C_{2n}^n\) cách (1)
- Cách 2: giả sử trong n người được chọn có k nữ và \(n-k\) nam
Chọn k nữ từ n nữ, có \(C_n^k\) cách
Chọn \(n-k\) nam từ n nam, có \(C_n^{n-k}\) cách
Số cách thỏa mãn: \(\sum\limits^n_{k=0}C_n^kC_n^{n-k}=\sum\limits^n_{k=0}C_n^kC_n^k=\sum\limits^n_{k=0}\left(C_n^k\right)^2\) (2)
(1); (2) \(\Rightarrow\sum\limits^n_{k=0}\left(C_n^k\right)^2=C_{2n}^n\)
(A+b)^n