K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

 \(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}=\dfrac{x+5}{2\left(x-5\right)\left(x+5\right)}\)

dkxd : x ≠ 0

          x ≠ 5

          x ≠ -5

MTC : 2x(x - 5)(x + 5)

Quy đồng mẫu thức hai vế của phương trình :

⇒ \(\dfrac{2\left(x-5\right)\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}\) = \(\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

Suy ra : 2(x - 5)(x + 5) - (x - 5)(x + 5) = x(x + 25)

         \(\Leftrightarrow\) 2(x2 - 25) - (x2 - 25) = x2 + 25x

         \(\Leftrightarrow\) 2x2 - 50 - x2 + 25 - x2 - 25x = 0

        \(\Leftrightarrow\) -25 - 25x = 0

        \(\Leftrightarrow\) -25x = 25

        \(\Leftrightarrow\) x = \(\dfrac{25}{-25}=-1\) (thỏa mãn)

 Vậy S = \(\left\{-1\right\}\)

 Chúc bạn học tốt

 

Ta có: \(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

\(\Leftrightarrow\dfrac{2\left(x+5\right)^2}{2x\left(x+5\right)\left(x-5\right)}-\dfrac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\dfrac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(2\left(x^2+10x+25\right)-\left(x^2-10x+25\right)=x^2+25x\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)

\(\Leftrightarrow15x+25=0\)

\(\Leftrightarrow15x=-25\)

hay \(x=-\dfrac{5}{3}\)(thỏa ĐK)

26 tháng 5 2021

\(x\ne0;x\ne\pm5\)

PT \(\Leftrightarrow\dfrac{x+25}{2\left(x+5\right)\left(x-5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}=0\)

\(\Rightarrow x^2+25x-2x^2-20x-50+x^2-10x+25=0\)

\(\Leftrightarrow-5x-25=0\)

\(\Leftrightarrow x=-5\) (ktm)
Vậy pt vô nghiệm.

26 tháng 5 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\ne\pm5\end{matrix}\right.\).

\(PT\Leftrightarrow\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}=\dfrac{5-x}{2x\left(x+5\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{\left(5-x\right)\left(x-5\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Rightarrow x\left(x+25\right)-2\left(x+5\right)^2=\left(5-x\right)\left(x-5\right)\)

\(\Leftrightarrow x^2+25x-2\left(x^2+10x+25\right)=10x-x^2-25\)

\(\Leftrightarrow-5x=25\Leftrightarrow x=-5\) (loại)

Vậy PT vô nghiệm

 

 

a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)

\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)

\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)

 

c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)

\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)

 

26 tháng 6 2017

a, \(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)

\(\Leftrightarrow\dfrac{12}{x^2-4}-\left(\dfrac{x+1}{x-2}-\dfrac{x+7}{x+2}\right)=0\)

\(\Leftrightarrow\dfrac{12}{x^2-4}-\left[\dfrac{\left(x+1\right)\left(x+2\right)-\left(x-2\right)\left(x+7\right)}{\left(x-2\right)\left(x+2\right)}\right]=0\)

\(\Leftrightarrow\dfrac{12}{x^2-4}-\left[\dfrac{x^2+3x+2-x^2-5x+14}{x^2-4}\right]=0\)

\(\Leftrightarrow\dfrac{12}{x^2-4}-\left(\dfrac{14-2x}{x^2-4}\right)=0\)

\(\Leftrightarrow12=14-2x\)

\(\Leftrightarrow x=1\)

Vậy x = 1

26 tháng 6 2017

giúp mink 2 câu còn lại vs

a: \(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow x^2+30x+25=x^2+25x\)

=>5x=-25

hay x=-5(loại)

b: \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)

=>2x+7=10

hay x=3/2

15 tháng 6 2018

a) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)\)

\(=\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)\)

\(=\left(x-2\right)\left(x+2-3+2x\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) ĐKXĐ: x ≠ 5; x ≠ -5

Với điều kiện trên ta có:

\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x^2-25\right)}=0\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=0\)

\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2-x\left(x+25\right)=0\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)

\(\Leftrightarrow5x-25=0\)

\(\Leftrightarrow5x=25\)

\(\Leftrightarrow x=5\)(Không thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là S = ∅

c) ĐKXĐ: x ≠ 1

Với điều kiện trên ta có:

\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2x}{x^2+x+1}=0\)

\(\Rightarrow x^2+x+1-3x^2-2x\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1-3x^2-2x^2+2x=0\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-4x^2+4x-x+1=0\)

\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(Khôngthoảman\right)\\x=-\dfrac{1}{4}\left(Thỏamãn\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{1}{4}\right\}\)

17 tháng 1 2023

\(1,\left(dk:x\ne0,-1,4\right)\)

\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)

\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)

\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)

\(\Leftrightarrow-x=-44\)

\(\Leftrightarrow x=44\left(tm\right)\)

\(2,\left(đk:x\ne4\right)\)

\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)

\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)

\(\Leftrightarrow28-12-6x-9+5x-20=0\)

\(\Leftrightarrow-x=13\)

\(\Leftrightarrow x=-13\left(tm\right)\)

17 tháng 1 2023

bn ơi ktra lại câu 2 giúp mk đc ko 

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

19 tháng 12 2021

b: \(=\dfrac{x^3+6x^2-25}{x\left(x+5\right)\left(x-2\right)}+\dfrac{x+5}{x\left(x-2\right)}\)

\(=\dfrac{x^3+6x^2-25+x^2+10x+25}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x^3+7x^2+10x}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x+2}{x-2}\)