Viết biểu thức sau thành 1 tổng (hiệu) của 2 lập phương và tình ía trị của chúng
a/ (x-1) (\(x^2\)+x+1) tại x =-2
b/ (x+5) (\(x^2\)+x+1) tại x =-4
c/ (x-3) (\(x^2\)+3x+9) tại x=13
d/ (2x-1) (4\(x^2\)+2x+1) tại x=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)A=x(x+y)-x(y-x)`
`=x^2+xy-xy+x^2`
`=2x^2`
Thay `x=-3`
`=>A=2.9=18`
`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`
`=8x^2+4xy+4xy+2y^2-y^2-2xy`
`=8x^2+y^2+6xy`
Thay `x=1/2,y=-3/4`
`=>B=8*1/4+9/16-9/4`
`=2+9/16-9/4`
`=9/16-1/4=5/16`
A = 2\(x^2\)y + \(xy\) - 3\(xy\)
Thay \(x\) = -2; y = 4 vào biểu thức A ta có:
A = 2\(\times\) (-2)2 \(\times\) 4 + (-2) \(\times\) 4 - 3 \(\times\) (-2) \(\times\) 4
A = 2 \(\times\) 4 \(\times\) 4 - 8 + 6 \(\times\) 4
A = 8 \(\times\) 4 - 8 + 24
A = 32 - 8 + 24
A = 24 + 24
A = 48
B = (2\(x^2\) + \(x\) - 1) - ( \(x^2+5x-1\) )
Thay \(x\) = - 2 vào biểu thức B ta có:
B = { 2\(\times\)(-2)2 + (-2) - 1} - { (-2)2 +5\(\times\)(-2) - 1}
B = { 2 \(\times\) 4 - 3} - { 4 - 10 - 1}
B = { 8 - 3} - { 4 - 11}
B = 5 - (-7)
B = 5 + 7
B = 12
b: Ta có: \(x^3-9x^2+27x-27\)
\(=\left(x-3\right)^3\)
\(=\left(-7\right)^3=-343\)
c: Ta có: \(\dfrac{x^3-1}{x^2+1}\)
\(=\dfrac{6^3-1}{6^2+1}=\dfrac{215}{37}\)
a, Thay x = 3 và y = -6 vào bt ta đc
\(5.3-4.\left(-6\right)=15-\left(-24\right)=39\\ b,\\ 2.\left(-2\right)^2-5.4=8-20=\left(-12\right)\\ c,\\ 5.\left(-1\right)^2+3.\left(-1\right)-1=5+\left(-3\right)-1=1\)
a) Thay x=3; y=-6
\(5x-4y=5.3-4.\left(-6\right)=15+24=39\)
b) Thay x=-2; y=4
\(2x^4-5y=2.\left(-2\right)^4-5.4=32-20=12\)
c, Thay x=0
\(5x^2+3x-1=5.0+3.0-1=-1\)
+) x=-1
\(5x^2+3x-1=5.\left(-1\right)^2+3.\left(-1\right)-1=5-3-1=1\)
+) \(x=\dfrac{1}{3}\)
\(5x^2+3x-1=5.\left(\dfrac{1}{3}\right)^2+3.\dfrac{1}{3}-1\)
\(=\dfrac{5}{9}+1-1=\dfrac{5}{9}\)
Giải:
a) \(B=3x\left(x+2\right)-x\left(x+1\right)\)
Tại x = -1, ta được:
\(B=3\left(-1\right)\left(-1+2\right)-\left(-1\right)\left(-1+1\right)\)
\(\Leftrightarrow B=-3-0=-3\)
b) \(C=7x\left(x-5\right)+3\left(x-2\right)\)
Tại x = 0, ta được:
\(C=7.0\left(0-5\right)+3\left(0-2\right)\)
\(\Leftrightarrow C=0+\left(-6\right)=-6\)
c) \(D=-2x\left(x+1\right)+4\left(x+2\right)\)
Tại x = -1, ta được:
\(D=-2\left(-1\right)\left(-1+1\right)+4\left(-1+2\right)\)
\(\Leftrightarrow D=0+4=4\)
d) \(E=x\left(x-5\right)-2x\left(x+1\right)+x^2\)
Tại x = -2, ta được:
\(E=-2\left(-2-5\right)-2\left(-2\right)\left(-2+1\right)+\left(-2\right)^2\)
\(\Leftrightarrow E=14-4+4=14\)
e) \(F=x\left(7x+2\right)-5x\left(x+3\right)\)
Tại x = 1, ta được:
\(F=1\left(7.1+2\right)-5.1\left(1+3\right)\)
\(F=9-20=-11\)
Vậy ...
\(B=3x\left(x+2\right)-x\left(x+1\right)\)
\(B=3x^2+6x-x^2-x\)
\(B=2x^2+5x\)
\(B=x\left(2x+5\right)\)
Tại x = -1 ta có :
\(B=\left(-1\right)\left[2.\left(-1\right)+5\right]=\left(-1\right).3=-3\)
\(C=7x\left(x-5\right)+3\left(x-2\right)\)
\(C=7x^2-35x+3x-6\)
\(C=7x^2-32x-6\)
Tại x=0 ta có :
\(C=7.0-32.0+6=6\)
\(D=-2x\left(x+1\right)+4\left(x+2\right)\)
\(D=-2x^2-2x+4x+8\)
\(D=-2x^2+2x+8\)
\(D=-2\left(x^2-x-4\right)\)
Tại x = -1 ta có :
\(D=-2.\left[\left(-1\right)^2-\left(-1\right)-4\right]=4\)
\(E=x\left(x-5\right)-2x\left(x+1\right)+x^2\)
\(E=x^2-5x-2x^2-2x+x^2\)
\(E=-7x\)
Tại x = -2 ta có :
\(E=-7\left(-2\right)=14\)
\(F=x\left(7x+2\right)-5x\left(x+3\right)\)
\(F=7x^2+2x-5x^2-15x\)
\(F=2x^2-13x=x\left(2x-13\right)\)
Tại x= 1 ta có :
\(F=1.\left(2.1-13\right)=-11\)
bài 1 :
a) 6(x+1)2 - (x-3)(x2 + 3x +9) + (x-2)2
= 6( x2 + 2x + 1 ) - (x3 + 3x2 + 9x - 3x2 - 9x - 27 ) + x2 - 4x + 4
= 6x2 + 12x + 6x - x3 - 3x2 - 9x + 3x2 + 9x + 27 + x2 - 4x + 4
= -x3 + 7x2 + 14x + 31 (1)
Thay x = 2 vào biểu thức (1) ta được :
\(\left(-2\right)^3+7.2^2+14.2+31\) = 79
Vậy với x = 2 giá trị của biểu thức (1) là 79
b) \(\left(2x-1\right)\left(3x+1\right)+\left(3x-4\right)\left(3-2x\right)\)
= 6x2 + 2x - 3x - 1 + 9x - 6x2 - 12 + x
= 9x - 13 (2)
Thay x= \(\dfrac{9}{8}\) Vào biểu thức (2) ta được :
9.\(\dfrac{9}{8}\) - 13 = \(-\dfrac{23}{8}\)
Vậy với x = 9/8 giá trị của biểu thức (2) là -\(\dfrac{23}{8}\)
a) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-1\)
\(=\left(-2\right)^3-1=-8-1=-9\)
c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3-27\)
\(=13^3-27=2170\)
d) Ta có: \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8x^3-1\)
\(=8\cdot\left(-1\right)^3-1=-8-1=-9\)