Tìm x,y thuộc Z
6xy - 3x - 12y - 24 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Cách giải
Vì d song song với hai mặt phẳng (P) và (Q) nên nhận
Chọn D
Cách giải : Vì d song song với hai mặt phẳng (P) và (Q) nên nhận
a/ Ta có : \(3y^2+12y+\left(4x^2+3x+5\right)=0\)
Xét \(\Delta'=6^2-3\left(4x^2+3x+5\right)=-12x^2-9x+21\)
Để pt trên có nghiệm thì \(\Delta'\ge0\Leftrightarrow-12x^2-9x+21\ge0\Leftrightarrow-\frac{7}{4}\le x\le1\)
Vì x là nghiệm nguyên nên \(0\le x\le1\)
Do đó x = 0 hoặc x = 1
Nếu x = 0 thì \(y_1=\frac{-6-\sqrt{21}}{3}\) (loại) , \(y_2=\frac{-6+\sqrt{21}}{3}\) (loại)
Nếu x = 1 thì y = -2 (nhận)
Vậy (x;y) = (1;-2)
Đọc là "đen-ta" hay còn gọi là biệt thức. Bạn học sâu hơn về tam thức bậc hai (sách SGK 9 tập hai) để hiểu rõ hơn :)
A=3x2 + 9y2 - 6xy - 16x - 12y + 2049
3A=9x2 + 27y2 - 18xy - 48x - 36y + 6147
=(3x-3y-8)2+18y2-84y+6083
=(3x-3y-8)2+2.(3y-7)2+5985>5985
Dấu = xảy ra khi 3y-7=0 và 3x-3y-8=0=>y=7/3 và x=5=>3A=5985=>a=1995
Amin=1995<=>y=7/3 và x=5
mk chỉ tìm được GTNN thôi