Phân tích đa thức thành nhân tử
(4x + 1)(12x - 1)(3x + 2)(x+1) = 4
4( x+5) ( x+6) (x+10) ( x+12) -3x^2
( x^2+2x)^2 + 9x^2 + 18x + 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 4x+1) (12x-1) (3x+2) (x+1) -4
=(4x+1)(3x+2)(12x-1)(x+1)-4
=(12x2+11x+2)(12x2+11x-1)-4
Đặt t=12x2+11x+2 ta được:
t.(t-3)-4
=t2-3t-4
=t2+t-4t-4
=t.(t+1)-4.(t+1)
=(t+1)(t-4)
thay t=12x2+11x+2 ta được:
(12x2+11x+3)(12x2+11x-2)
Vậy ( 4x+1) (12x-1) (3x+2) (x+1) -4=(12x2+11x+3)(12x2+11x-2)
b) (x2+2x)2+9x2+18x+20
=(x2+2x)2+9.(x2+2x)+20
Đặt y=x2+2x ta được:
y2+9y+20
=y2+4y+5y+20
=y.(y+4)+5.(y+4)
=(y+4)(y+5)
thay y=x2+2x ta được:
(x2+2x+4)(x2+2x+5)
Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)
Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.
\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)
Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
Câu sau tương tự nhé :)
a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)
c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
Bài 1:
\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)
Bài 2:
\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)