Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!
Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.
a) CM: OEFC là hình thang
b) CM: OEIC là hình bình hành.
c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật.
d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.
a) CM: ADCH là hình chữ nhật.
b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.
c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.
d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)
Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.
a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.
b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.
c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)
a) Xét tứ giác AFCH có
E là trung điểm của đường chéo AC(gt)
E là trung điểm của đường chéo HF(gt)
Do đó: AFCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AFCH có \(\widehat{AHC}=90^0\)(gt)
nên AFCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: AFCH là hình chữ nhật(cmt)
nên AF//BH và AF=BH(Hai cạnh đối)(1)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AF//BH và AF=BH
Xét tứ giác ABHF có
AF//BH(cmt)
AF=BH(cmt)
Do đó: ABHF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo AH và BF cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà O là trung điểm của AH(gt)
nên O là trung điểm của BF
hay B,O,F thẳng hàng(đpcm)