Cho Q=\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{89}+\frac{1}{90}.\)
So sánh Q với \(\frac{5}{6}.\)
Các bạn giải ra hộ mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 89 + 1 / 90 ... 5 / 6
A = 5 / 6 = 1 / 2 + 1 / 3
Ta đặt B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 ( 30 phân số )
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 ( 30 phân số )
Ta có : B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 > 1 / 60 + 1 / 60 + 1 / 60 + ... + 1 / 60 = 30 . 1 / 60 = 1 / 2
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 > 1 / 90 + 1 / 90 + 1 / 90 + ... + 1 / 90 = 30 . 1 / 90 = 1 / 3
Vì A = B + C > 1 / 2 + 1 / 3 = 5 / 6 nên 1 / 31 + 1 / 32 + ... + 1 / 89 + 1 / 90 > 5 / 6
GIẢI VẦY MỚI GỌI LÀ GIẢI CHI TIẾT
Ta sẽ lấy
\(1-\frac{1}{90}=\frac{89}{90}\)
Sau đó ta so sánh :
\(\frac{89}{90}>\frac{5}{6}\)
k mình nhé !!!
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
mà \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{5}{12}\)
1/31 đến 1/90 có 60 số hạng mà 1/31 là lớn nhất nên ta lấy 1/31*60=60/31 < 2
=>A:1/2=1/1x3+1/3x5+1/5x7+...+1/99x101
=>2a=1/2(2/1x3+2/3x5+...+2/99x101)
từ đây tự làm
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(\Rightarrow4A=\frac{100}{101}\)
\(\Leftrightarrow A=\frac{100}{101}.\frac{1}{4}=\frac{4.25}{101.4}=25< 26\)
Ta có:\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{89}+\frac{1}{90}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{90}\right)\)
\(>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\right)\)
có 30 số hạng 1/60 có 30 số hạng 1/90
\(=\frac{30}{60}+\frac{30}{90}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
=> \(\frac{1}{31}+...+\frac{1}{90}>\frac{5}{6}\)
đây là cách ngắn gọn chỉ dành cho hs khá giỏi nha
Đã trả lời ở đâu đó rồi (chi tiết)
-Nhận xét, phân tích bài toán:
So sánh với (5/6) =>rút gọn vế trái thành một phân số có mẫu số bằng 6
=> ta chọn số hạng có mẫu số là bội số của 6 để gom lại.
\(\frac{1}{31}+..+\frac{1}{36}>\frac{1}{36}+..+\frac{1}{36}=\frac{6}{36}=\frac{1}{6}\)
\(\frac{1}{37}+...+\frac{1}{42}>\frac{1}{42}+..+\frac{1}{42}=\frac{6}{42}=\frac{1}{7}\)
..........
\(\frac{1}{83}+..+\frac{1}{90}=\frac{1}{90}+...+\frac{1}{90}=\frac{6}{90}=\frac{1}{15}\)
Như vậy sau bước 1 rút vê trái về còn \(\frac{1}{6}+\frac{1}{7}...+\frac{1}{15}\)
Rút gọn tiếp vẫn theo cách trên
\(\frac{1}{7}+..+\frac{1}{12}>\frac{1}{12}+..+\frac{1}{12}=\frac{6}{12}=\frac{3}{6}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{18}+\frac{1}{18}+\frac{1}{18}=\frac{1}{6}\)
\(VT=\left(\frac{1}{31}+..+\frac{1}{90}\right)>\left(\frac{1}{6}+\frac{3}{6}+\frac{1}{6}\right)=\frac{5}{6}=VP\)
Đặt \(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=30.\frac{1}{60}=\frac{1}{2}\)
\(B=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{90}>\frac{1}{90}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}=30.\frac{1}{90}=\frac{1}{3}\)
\(=>Q=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}=A+B>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy \(Q>\frac{5}{6}\)