K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

b) Ta quy đồng rồi => x+xy = 4

=> x(y+1) = 4 thì  1/x−y/2=1/4

 

 

a) Để y nguyên thì \(6x-4⋮2x+3\)

\(\Leftrightarrow-13⋮2x+3\)

\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)

\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)

hay \(x\in\left\{-1;-2;5;-8\right\}\)

21 tháng 7 2021

c, x/2+1/y=1/3         (x,y∈Z)

⇒1/y=1/3-x/2

⇒1/y=2-3x/6

⇒y(2-3x)=6

⇒y∈Ư(6)∈{1;-1;2;-2;3;-3;6;-6}

y1-12-23-36-6
2-3x6-63-32-21-1
3x-48-150413
x-4/3 (loại)8/3(loại)-1/3(loại)5/3(loại)04/3(loại)1/3(loại)

1

 

Vậy các cặp (x;y) thỏa mãn pt trên là (0;3);(1;-6)

21 tháng 7 2021

d, 4x-5⋮2x+1     (x∈Z)

⇒4x-5-2(2x+1)⋮2x+1

⇒-7⋮2x+1

⇒2x+1∈Ư(-7)∈{1;-1;7;-7}

Ta lập bảng

2x+11-17-7
2x0-26-8
x013-4

Vậy với x=-4;x=0;x=1;x=3 thì thỏa mãn pt trên

a.\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)

\(ĐK:y\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\dfrac{12+\left(y^2-4\right)}{\left(y-2\right)\left(y+2\right)}\)

\(\Leftrightarrow\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+\left(y^2-4\right)\)

\(\Leftrightarrow y^2+2y-y-2-5y+10=12+y^2-4\)

\(\Leftrightarrow-4y=0\)

\(\Leftrightarrow y=0\left(tm\right)\)

Vậy \(S=\left\{0\right\}\)

b.\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)

\(ĐK:x\ne1\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{\left(x^2+x+1\right)-3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow\left(x^2+x+1\right)-3x^2=2x\left(x-1\right)\)

\(\Leftrightarrow x^2+x+1-3x^2=2x^2-2x\)

\(\Leftrightarrow4x^2-3x-1=0\)

\(\Leftrightarrow4x^2-4x+x-1=0\)

\(\Leftrightarrow4x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4}\right\}\)

 

 

NV
18 tháng 4 2021

1.

\(y'=12x+\dfrac{4}{x^2}\)

2.

\(y'=\dfrac{3}{\left(-x+1\right)^2}\)

3.

\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)

4.

\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)

\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)

5.

\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)

6.

\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)

8 tháng 6 2021

a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)

\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)

\(2x+1=21\)

\(2x=21-1\)

\(2x=20\)

\(x=10\)