giải phương trình sau:
\(\dfrac{\left(1-2sinx\right)cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k2\pi\\x\ne-\frac{\pi}{6}+k2\pi\\x\ne\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(1+sinx-2sin^2x\right)\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)
\(\Leftrightarrow\sqrt{3}sinx-cosx=sin2x+\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=sin\left(2x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(cosx+\sqrt{3}sinx\ne0\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)\ne0\Rightarrow...\)
Đặt \(cosx+\sqrt{3}sinx=2sin\left(x+\frac{\pi}{6}\right)=a\) với \(-2\le a\le2\):
\(a=\frac{3}{a}+1\Leftrightarrow a^2-a-3=0\)
\(\Rightarrow\left[{}\begin{matrix}a=\frac{1+\sqrt{13}}{2}>2\left(l\right)\\a=\frac{1-\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow2sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{2}\)
\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{4}=sin\alpha\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\alpha+k2\pi\\x+\frac{\pi}{6}=\pi-\alpha+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)
\(pt\Leftrightarrow\dfrac{\left(1-2\sin x\right)\cos x}{1-\sin^2x}=\sqrt{3}\Leftrightarrow\dfrac{1-2\sin x}{\sqrt{3}\cos x}=1\)
\(\Leftrightarrow1-2\sin x=\sqrt{3}\cos x\Leftrightarrow\sqrt{3}\cos x+2\sin x=1\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{\sqrt{7}}\cos x+\dfrac{2}{\sqrt{7}}\sin x=1\)
\(\Leftrightarrow\cos a\cdot\cos x+\sin a\cdot\sin x=1\) với \(a=\sin^{-1}\dfrac{2}{\sqrt{7}}=\cos^{-1}\dfrac{\sqrt{3}}{\sqrt{7}}\)
\(\Leftrightarrow\cos\left(a-x\right)=1\Leftrightarrow a-x=k2\pi\)
\(\Leftrightarrow x=a-k2\pi\Leftrightarrow x=a+m2\pi\left(m\in Z\right)\)
P.s: lâu lâu pick thử bài lượng phát, nguy cơ đúng 80% nhé :)
a/ ĐKXĐ: \(sinx\ne-1\)
\(\Leftrightarrow\left(2sinx+1\right)\left(3cos4x+2sinx\right)+4cos^2x+1=8+8sinx\)
\(\Leftrightarrow6sinx.cos4x+4sin^2x+3cos4x+2sinx+4cos^2x+1=8+8sinx\)
\(\Leftrightarrow6sinx.cos4x+3cos4x-6sinx-3=0\)
\(\Leftrightarrow6sinx\left(cos4x-1\right)+3\left(cos4x-1\right)=0\)
\(\Leftrightarrow\left(6sinx+3\right)\left(cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\cos4x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\1-2sin^22x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sin^2x\left(1-sin^2x\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sin^2x\left(1+sinx\right)\left(1-sinx\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\\x=k\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}tanx\ne-1\\cosx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left(1+sinx+cos2x\right).\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=cosx\left(1+\frac{sinx}{cosx}\right)\)
\(\Leftrightarrow\left(1+sinx+cos2x\right)\left(sinx+cosx\right)=cosx+sinx\)
\(\Leftrightarrow\left(cosx+sinx\right)\left(sinx+cos2x\right)=0\)
\(\Leftrightarrow sinx+cos2x=0\)
\(\Leftrightarrow-2sin^2x+sinx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(l\right)\\sinx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
a.\(\dfrac{sin2x+cosx-\sqrt{3}\left(cos2x+sinx\right)}{2sin2x-\sqrt{3}}=1\left(1\right)\)
ĐKXĐ: sin2x≠\(\dfrac{\sqrt{3}}{2}\)
(1) ⇔ sin2x + cosx - \(\sqrt{3}\) ( cos2x + sinx) = 2sin2x - \(\sqrt{3}\)
⇔cosx - \(\sqrt{3}\) sinx = \(\sqrt{3}\) cos2x + sin2x +\(\sqrt{3}\)
⇔\(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}\)
⇔\(sin\left(\dfrac{\Pi}{6}-x\right)=sin\left(2x+\dfrac{\Pi}{3}\right)-sin\dfrac{\Pi}{3}\)
⇔\(sin\left(\dfrac{\Pi}{6}-x\right)=2cos\left(x+\dfrac{\Pi}{3}\right)sinx\)
⇔\(sin\left(\dfrac{\Pi}{6}-x\right)=2sin\left(\dfrac{\Pi}{6}-x\right)sinx\)
⇔\(sin\left(\dfrac{\Pi}{6}-x\right)\left(2sinx-1\right)=0\)
Đến đây tự giải tiếp nha nhớ đối chiếu đk.
b.\(\left(2cosx-1\right)cotx=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\left(1\right)\)
ĐKXĐ: sinx≠0 và cosx≠1
(1)⇔\(\left(2cosx-1\right)\dfrac{cosx}{sinx}=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\)
⇔cosx(2cosx-1)(cosx-1) = 3(cosx-1) + 2sin2x
⇔2cos3x - cos2x - 2cosx +1 = 0
⇔ (cosx-1)(cosx+1)(2cosx-1)=0
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne-\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\dfrac{cosx-2sinx.cosx}{1-2sin^2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)
\(\Rightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\left(loại\right)\\x=-\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
ĐKXĐ : \(sinx\ne1;-\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+2k\pi\\x\ne\dfrac{-\pi}{6}+2k\pi;\dfrac{7\pi}{6}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow x\ne\dfrac{-\pi}{6}+\dfrac{2}{3}k\pi\)( k thuộc Z )
P/t đã cho \(\Leftrightarrow\dfrac{cosx-sin2x}{1-2sin^2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x+\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+2k\pi\\2x+\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+2k\pi\end{matrix}\right.\) ( k thuộc Z )
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+2k\pi\\x=\dfrac{-\pi}{6}+\dfrac{2}{3}k\pi\left(L\right)\end{matrix}\right.\)
Vậy ...