Cho tam giác ABC vuông tại A , phân giác BD . Từ D kẻ đường thẳng vuông góc với BC tại E và cắt tia BA tại F .
a , Chứng minh tam giác ADB = tam giác EDB
b , Chứng minh tam giá> ADF cân
c , Chứng minh BD vuông góc với FC
d , Chứng minh DC > AD > BC + BD - 2AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau cuoi cm AC> BC+ BD-2AB
ta co :
DC>AD ( cmt)
ma AD= DE ( tam giac BAD = tam giac BED)
nen DC> DE
--> DC+AB>DE+AB ma AB= BE ( tam giac ABD= tam giac BED)
--> DC+AB>BE+EC
--> DC+AB>BC
lai co AD+AB > BD ( bdt trong tam giac ABD )
--> AD+AB+DC+AB>BC+BD
--> AD+DC+2AB>BC+BD
--> AC+2AB >BC+BD
-> AC > BC+BD-2AB
a)xet tam giac ADB vuong tai A va tam giac EDB vuong tai E ta co:
BD=BD ( canh chung ) goc ABD= goc EBD ( BD la tia p/g goc B)
--> tam giac ADB = tam giac EDB ( ch=gn)
b) xet tam giac ADF va tam giac DEC ta co
AD=DE ( tam giac ABD= tam giac EDB); goc DAF= goc DEC (=90); goc ADF= gc EDC ( 2 goc doi dinh)
-> tam giac ADF= tam giac DEC-> DF=DC=> tam goac DFC can tai D
d) ta co:
BA=BE ( tam giac ABD= tam giac EBD )
AF=EC( tam giac DAF can tai D)
--> BA+AF=BE+EC==> BF=BC
ta co
BF=BC (cmt)
DF=DC ( tam giac DAF can tai D)
--> BD la duong trung truc FC-> BD vuong gocFC
d)tu diem D den duong thang EC ta co
DC la duong xien ; DE la duong vuong goc -> DC>DE ( quan he duong xien duong vuong goc)
ma DE= DA ) tam giac BAD= tam giac BED)
nen DC >DA
khuc sau : AD+2AB > BC+BD
AD+AB> DB ( bdt trong tam giac ABD )
AB > BC (???)
a: Xét ΔAFE vuông tại A và ΔDFC vuông tại D có
góc AFE=góc DFC
=>ΔAFE đồng dạng với ΔDCF
b: Xét ΔAEF vuông tại A và ΔACB vuông tại A có
góc AEF=góc ACB
=>ΔAEF đồng dạng với ΔACB
=>EF/CB=AE/AC
=>EF*AC=AE*CB