K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

Ta có 8n - 1 =(8 - 1)(8n - 1 + 8n - 2  + .... + 1) = 7(8n - 1 + 8n - 2 + .... + 1) 

=> 8n - 1 là số nguyên tố khi 8n - 1 + 8n - 2 + .... + 1 = 1

Khi đó 8n - 1 = 7

<=> 8n = 8

<=> n = 1

Vậy n = 1 thì 8n - 1 là số nguyên tố 

17 tháng 7 2021

Ta có n2 + 2n - 8 = (n + 4)(n - 2)

Vì n > 0 => n + 4 > 0

=> Để n2 + 2n - 8 là số nguyên tố 

thì n - 2 = 1 => n = 3 

Thử lại 32 + 2.3 - 8 = 7 (đúng)

Vậy n = 3 thì n2 + 2n - 8 là số nguyên tố  

9 tháng 9 2020

Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương

\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)

\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)

Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:

\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.

Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)

\(\Rightarrow3y^2+3y+1=2n+5\)

Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:

\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)

Vì nguyên dương nên nhận y=2--->n=7

DD
16 tháng 5 2021

Ta có: \(2\left(m^2+n^2\right)-1=2\left(m^2+n^2+2mn\right)-1-4mn=2\left(m+n\right)^2-1-4mn\)

\(=2\left[\left(m+n\right)^2-1\right]-4mn+1=2\left(m+n-1\right)\left(m+n+1\right)-4mn+1-4m^2-4m+4m^2+4m\)

\(=2\left(m+n+1\right)\left(-m+n-1\right)+\left(2m+1\right)^2\)

Suy ra \(\left(2m+1\right)^2⋮\left(m+n+1\right)\)mà \(m+n+1\)nguyên tố nên \(2m+1⋮m+n+1\)

do \(m,n\)nguyên dương suy ra \(2m+1\ge m+n+1\Leftrightarrow m\ge n\).

Một cách tương tự ta cũng suy ra được \(n\ge m\).

Do đó \(m=n\).

Khi đó \(mn=m^2\)là một số chính phương. 

16 tháng 5 2021

thank you