chứng minh rằng:
55-54+53 chia hết cho 7;
76+75-74 chia hết cho 11;
109+108+107 chia hết cho 222;
106-57 chia hết cho 59
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sơ đồ con đường |
Lời giải chi tiết |
|
Xét 5 3 . 5 2 − 5 + 1 = 5 3 .21 Áp dụng tính chất chia hết của một tích: 21 ⋮ 7 ⇒ 5 3 .21 ⋮ 7 ⇒ 5 3 . 5 2 − 5 + 1 ⋮ 7 ⇒ 5 5 − 5 4 + 5 3 ⋮ 7 |
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{54}\right).2.3.4.5...54\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{54}\right).2.3.4.5...11.12...54\)
\(\Rightarrow\hept{\begin{cases}A⋮5\\A⋮11\end{cases}}\)mà \(\left(5,11\right)=1\) nên \(A⋮55\left(đpcm\right)\)
a) = 53. 52- 53 .5+ 53
= 53 .( 52- 5+1)
=53. 21 mà 21 chia hết cho 7
=) 55 - 54 + 53 chia hết cho 7
b)= 74.72 + 74.7 -74
= 74( 72+ 7-1)
=74. 55 mà 55chia hết cho 11
=)7^6 + 75-74 chia hết cho 11
c)=( 2.3.4)2.27 . (2.27)2.3.4 . ( 2)2.5
= ( 6. 4) 6.9 . ( 6. 9 ) 6.4. 210
= 246. 249. 546.549 . 210
=12966 . 12964.210mà 1296 chia hết cho 72 ( vì 1296 : 72 bằng 18)
=)24^54. 54^24 + 2^10 chia hết cho 72 ^53
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Giải
55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
a) 55-54+53=53.(52-51+50)=53.(25-5+1)=53.21=53.3.7 chia hết cho 7
=>ĐPCM
b) 76+75-74=74.(72+71-70)=74.(49+7-1)=74.55=74.5.11 chia hết cho 11
=>ĐPCM
c) 109+108+107=107.(102+101+100)=(5.2)7.(100+10+1)=57.27.111=57.26.2.111
=57.26.222 chia hết cho 222
=>ĐPCM
d) 106-57=(2.5)6-5.56=26.56-5.56=(26-5).56=(64-5).56=59.56 chia hết cho 59
=>ĐPCM
\(5^5-5^4+5^3=5^2.5^3-5.5^3+1.5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\)
Chia hết cho 7
=> dpcm
Các câu còn lại tương tự