K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.

17 tháng 3 2019

Bé Của Nguyên giúp nè mẹ

NV
11 tháng 12 2021

Đặt \(\sqrt{x^2-5x+5}=t>0\)

\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất của pt

\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

17 tháng 8 2016

 

  

 

NV
22 tháng 12 2020

ĐK: \(x\ge-\dfrac{5}{2}\)

\(\Leftrightarrow3x^2-4x-4=2x+5\)

\(\Leftrightarrow3x^2-6x-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (thỏa mãn)

b.

ĐKXĐ: \(3\le x\le8\)

\(\Leftrightarrow-x^2+11x-24-\sqrt{-x^2+11x-24}-2=0\)

Đặt \(\sqrt{-x^2+11x-24}=t\ge0\)

\(\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{-x^2+11x-24}=2\)

\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)