GPT: \(5\left(\sqrt{x+5}+\sqrt{3x+4}\right)=5x^2-11x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
Đặt \(\sqrt{x^2-5x+5}=t>0\)
\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)
Nhận thấy \(t=1\) là 1 nghiệm của pt
Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)
\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm
\(\Rightarrow t=1\) là nghiệm duy nhất của pt
\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
ĐK: \(x\ge-\dfrac{5}{2}\)
\(\Leftrightarrow3x^2-4x-4=2x+5\)
\(\Leftrightarrow3x^2-6x-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (thỏa mãn)
b.
ĐKXĐ: \(3\le x\le8\)
\(\Leftrightarrow-x^2+11x-24-\sqrt{-x^2+11x-24}-2=0\)
Đặt \(\sqrt{-x^2+11x-24}=t\ge0\)
\(\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{-x^2+11x-24}=2\)
\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)