K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2021

\(B=\left(\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right)\left(\sqrt{6}+11\right)\)

\(=\left[3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)

\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

\(=6-121=-115\) là số nguyên (đpcm)

b) Ta có: \(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right)\left(\sqrt{6}+11\right)\)

\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

=6-121=-115

a: Ta có: \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}-11\right)\)

\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}-11\right)\)

\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}-11\right)\)

\(=127-22\sqrt{6}\)

b: Ta có: \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)

=-1+5

=4

28 tháng 6 2021

`c)(15/(sqrt6+1)+4/(sqrt6-2)-12/(3-sqrt6))*(sqrt6+11)`

`=((15(sqrt6-1))/(6-1)+(4(sqrt6+2))/(6-4)-(12(3+sqrt6))/(9-6))*(sqrt6+11)`

`=(3(sqrt6-1)+2(sqrt6+2)-4(3+sqrt6))*(sqrt6+11)`

`=(3sqrt6-3+2sqrt6+4-12-4sqrt6)*(sqrt6+11)`

`=(sqrt6-11)(sqrt6+11)`

`=6-121=-115`

c) Ta có: \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left[3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)

\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

=6-121=-115

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{16}-2}-\frac{12}{3-\sqrt{16}}\right).(\sqrt{6}+11)=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4}{4-2}-\frac{12}{3-4}\right)(\sqrt{6}+11)\)

\(=\left(\frac{15(\sqrt{6}-1)}{6-1}+2+12\right)(\sqrt{6}+11)=(3\sqrt{6}-3+14)(\sqrt{6}+11)\)

\(=(3\sqrt{6}+11)(\sqrt{6}+11)\)

23 tháng 8 2018

\(A=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}+11\right)\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}+\dfrac{12}{\sqrt{6}-3}\right)\)

\(=\left(\sqrt{6}+11\right)\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}+\dfrac{12\left(\sqrt{6}+3\right)}{-3}\right)\)

\(=\left(\sqrt{6}+11\right)\left(\dfrac{15\sqrt{6}-15}{5}+\dfrac{4\sqrt{6}+8}{2}+\dfrac{12\sqrt{6}+36}{-3}\right)\)

\(=\left(\sqrt{6}+11\right)\left(3\sqrt{6}-3+2\sqrt{6}+4-4\sqrt{6}-12\right)\)

\(=\left(\sqrt{6}+11\right)\left(\sqrt{6}-11\right)\)

\(=6-121=-115\)

16 tháng 7 2021

a) \(A=\left(1-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+2\right)\)
        \(=\left(\dfrac{2}{2}-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+\dfrac{4}{2}\right)\)
        \(=\dfrac{2-\left(\sqrt{3}-1\right)}{2}:\dfrac{\left(\sqrt{3}-1\right)+4}{2}\)
        \(=\dfrac{3-\sqrt{3}}{2}.\dfrac{2}{\sqrt{3}+3}\)
        \(=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(1+\sqrt{3}\right)}\)
        \(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
        \(=\dfrac{\left(\sqrt{3}-1\right)^2}{2}\)
Vì \(\left\{{}\begin{matrix}\left(\sqrt{3}-1\right)^2>0\\2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(\sqrt{3}-1\right)^2}{2}>0\) hay A>0
=> A có căn bậc 2
Vậy......

b)\(B=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
       \(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\sqrt{5}\right):\dfrac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
       \(=\left(\dfrac{\sqrt{2}\left(3-1\right)}{1-3}-\sqrt{5}\right).\dfrac{5-2}{\sqrt{5}+\sqrt{2}}\)
       \(=\left(-\sqrt{2}-\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
       \(=-\left(\sqrt{2}+\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
       \(=-3\)
Vì -3 < 0 hay B < 0 
=> B không có căn bậc 2
Vậy.....

2) Ta có: \(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}+\dfrac{12}{\sqrt{6}-3}-\sqrt{6}\)

\(=3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)-\sqrt{6}\)

\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)

\(=-11\)

3) Ta có: \(\left(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{6}+\sqrt{2}}\right)\left(\sqrt{3}-1\right)^2\)

\(=\left(\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}\right)\left(4-2\sqrt{3}\right)\)

\(=\left(\sqrt{6}+\sqrt{5}\right)\left(4-2\sqrt{3}\right)\)

\(=4\sqrt{6}-6\sqrt{2}+4\sqrt{5}-2\sqrt{15}\)

12 tháng 7 2021

còn câu 1