Ta gọi p và q là 2 số nguyên tố liên tiếp nếu giữa p và q ko có số nguyên tố nào.
Tìm 3 số nguyên tố liên tiếp p; q; n sao cho p2; q2; n2 cũng là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không có số nào đâu bạn vì theo khái niệm thì khi nhân một số nguyên tố với một số nguyên tố thì nó sẽ là hợp số vì khi đó nó đã có trên 2 ước rồi bạn
đúng quá đúng ko các bạn tick cho mình nhé
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
giả sử p<q<r
+) Nếu p=3
+) Nếu q=3
Xét số tự nhiên a không chia hết cho3 =>a=3k+1 hoặc a=3k+2 (k thuộc N*)
-với a=3k+1
-với a=3k+2
=>với a không chia hết cho 3
=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)
do đó p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3
=>p2+q2+r2 là hợp số
Vậy p=3;q=5;r=7
ai tích mình tích lại !!!
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì $$ chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó $$ chia hết cho 3.
Vậy 4p+1 là hợp số,
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó chia hết cho 3.
Vậy 4p+1 là hợp số,
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì \(2p+1=2\left(3k+1\right)+1=6k+3\) chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9\) chia hết cho 3.
Vậy 4p+1 là hợp số,
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì $2p+1=2\left(3k+1\right)+1=6k+3$2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó $4p+1=4\left(3k+2\right)+1=12k+9$4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
giả sử p<q<r
+) Nếu p=3
+) Nếu q=3
Xét số tự nhiên a không chia hết cho3 =>a=3k+1 hoặc a=3k+2 (k thuộc N*)
-với a=3k+1
-với a=3k+2
=>với a không chia hết cho 3
=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)
do đó p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3
=>p2+q2+r2 là hợp số
Vậy p=3;q=5;r=7