| x-1|=x+3
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{x}{2}=\dfrac{1-x}{3}\)
\(\Leftrightarrow3x=2\left(1-x\right)\)
\(\Leftrightarrow3x=2-2x\)
\(\Leftrightarrow5x=2\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy ...
Ta có: \(\dfrac{x}{2}=\dfrac{1-x}{3}\)
\(\Leftrightarrow3x=2\left(1-x\right)\)
\(\Leftrightarrow3x=2-2x\)
\(\Leftrightarrow3x+2x=2\)
\(\Leftrightarrow5x=2\)
hay \(x=\dfrac{2}{5}\)
Vậy: \(x=\dfrac{2}{5}\)
30% . x - x - \(\dfrac{5}{6}\) = \(\dfrac{1}{3}\)
\(\Rightarrow\) (\(\dfrac{3}{10}\) - 1) . x = \(\dfrac{1}{3}+\dfrac{5}{6}\)
\(\Rightarrow\) \(-\dfrac{7}{10}\) . x = \(\dfrac{7}{6}\)
\(\Rightarrow\) x = \(-\dfrac{3}{5}\)
KO ghi đề nhé
\(\dfrac{3}{10}.x-x=\dfrac{1}{3}+\dfrac{5}{6}\)
\(x\left(\dfrac{3}{10}-1\right)=\dfrac{2}{6}+\dfrac{5}{6}\)
\(x.\dfrac{-7}{10}=\dfrac{7}{6}\)
\(x=\dfrac{7}{10}:\dfrac{-7}{6}\)
\(x=\dfrac{7}{10}.\dfrac{6}{-7}\)
\(x=\dfrac{42}{-70}\)
\(x=\dfrac{6}{-10}\)
\(x=\dfrac{3}{-5}\)
Vậy \(x=\dfrac{3}{-5}\)
\(\Leftrightarrow2.5:x=2+\dfrac{2}{3}-2-\dfrac{1}{5}=\dfrac{7}{15}\)
hay \(x=\dfrac{5}{2}:\dfrac{7}{15}=\dfrac{5}{2}\cdot\dfrac{15}{7}=\dfrac{75}{14}\)
\(\)đặt \(2x^2+y^2+\dfrac{28}{x}+\dfrac{1}{y}=A\)
\(=>A=2x^2+y^2-7x-y+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2x^2-8x+8+y^2-2y+1+x+y-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2\left(x-2\right)^2+\left(y-1\right)^2+\left(x+y\right)-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
áp dụng BDT AM-GM\(=>\dfrac{28}{x}+7x+\dfrac{1}{y}+y\ge2\sqrt{28.7}+2\sqrt{1}=30\)
\(=>A\ge30+3-9=24\)
dấu"=" xảy ra<=>x=2,y=1
f(x)=0 \(\Leftrightarrow\) 2x+a2-3=0 \(\Rightarrow\) x=\(\dfrac{3-a^2}{2}\).
a) x=1 \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=1 \(\Rightarrow\) a=\(\pm\)1.
b) x=\(\dfrac{-1}{2}\) \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=\(\dfrac{-1}{2}\) \(\Rightarrow\) a=\(\pm\)2.
\(f\left(x\right)=\left(x+1\right)\left(x+2m-3\right)\)
\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1< 1\\x=-2m+3\end{matrix}\right.\)
Để \(f\left(x\right)>0\) \(\forall x>1\Rightarrow-2m+3\le1\Leftrightarrow m>1\)
\(\left|x-1\right|=x+3\left(ĐK:x\ge-3\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=x+3\\x-1=-x-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-x=1+3\\x+x=1-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0x=4\\2x=-2\end{matrix}\right.\\ \Leftrightarrow x=-1\left(tmđk\right)\)
Vậy x = -1 là nghiệm của pt.