K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

h(x)= -2ax+1

h(-1)= -2a.(-1)+1=5

        =>2a+1=5

        =>a=3

ta có : h(x)= -2.3x+1

                  = -6x+1

h(5)= -6.5+1

h(5)=-30+1=-29

VẬY h(5)=-29

1 tháng 8 2020

Đặt h(x) = x4 + a.x3 + b.x2 + c.x + d

h(1)  = 1 => 1 + a + b + c + d = 2

Tương tự với h(2), h(4),... ta được 4 phương trình bậc một 4 ẩn, dễ dàng giải ra kết quả.

2 tháng 8 2020

xét g(x)=x2+1 có g(1)=2; g(2)=5; g(4)=17; g(-3)=10

ta có f(x)=h(x)-g(x)thì f(x) bậc 4 của hệ số x4 là 1 và f(1)=f(2)=f(4)=f(-3)

=> f(x)=(x-1)(x-2)(x-4)(x+3)

=> f(x)=(x2-3x+2)(x2-x-12)=x4-4x3-7x2+34x-24

=> h(x)=x4-4x3-6x2+34x-25

G(-1)=5

=>2a+1=5

=>2a=4

=>a=2

12 tháng 10 2019

Dạ ! Thầy giáo mới chữa bài này xong , tiện thể giải luôn ạ :33

Có : Đa thức h(x) có bậc là 4, hệ số của bậc cao nhất là 1

=> h(x) = x4 + bx3 + cx2 + dx + c

Đặt g(x) = x2 + 1 có :

g(1) = 2 ; g(2) = 5; g(4) = 17 ; g(-3) = 10

Đặt : f(x) = h(x) - g(x)

=> f(1) = h(1) - g(1) = 2 - 2 = 0

      f(2) = h(2) - g(2) = 5 - 5 = 0

      f(4) = h(4) - g(4) = 17 - 17 = 0

      f(-3) = h(-3) -g(-3) = 10 - 10 = 0

=> h(x) = ( x - 1)( x - 2)( x +3)( x- 4)

=> h(x) = ( x2 - 5x + 4 )( x2 + x - 6 )

=> h(x) = x4 - 4x3 - 6x2 - 28x - 23

    

20 tháng 8 2019

Để phương trình có nghiệm thì:

\(\Delta_x=a^2-\left(2a^2+b^2-5\right)\ge0\)

\(\Leftrightarrow a^2+b^2\le5\)

\(\Leftrightarrow\left(a+b\right)^2\le5+2ab\)

\(\Leftrightarrow ab\ge\frac{\left(a+b\right)^2-5}{2}\)

Ta có:

\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1\)

\(\ge\frac{\left(a+b\right)^2-5}{2}+\left(a+b\right)+1=\frac{1}{2}\left(a+b+1\right)^2-2\ge-2\)

Đấu = xảy ra khi: \(\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)

8 tháng 5 2017

H(1)=a+b+5=9 <=> a+b=4 (1)

H(-1)=a-b+5=5 <=> a=b (2)

Thay vào (1) => a=b=4:2=2

Hàm số H(x)=2x2+2x+5

ví sao a=b bn ?

31 tháng 12 2017

Ta có: f(x) + h(x) = g(x)

Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)

            = x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1

            = ( x4 – x4) – x3 + (x2 + 3x2 ) – x + (5+ 1)

            = -x3 + 4x2 – x + 6