Chứng minh \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}=\sqrt{2}+\sqrt{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}}\)
\(A^2=8+2\sqrt{10+2\sqrt{5}+8-2\sqrt{10+2\sqrt{5}}+}2\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
\(A^2=16+2\left[64-4\left(10+2\sqrt{5}\right)\right]\)
\(A^2=16+128-8\left(10+2\sqrt{5}\right)\)
\(A^2=144-80-16\sqrt{5}\)
\(A^2=64-16\sqrt{5}\)
\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2.\sqrt{10+2\sqrt{5}}+2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)
\(=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}+2^2}\)
\(=16+2\sqrt{\left(2\sqrt{5}-2\right)^2}=16+2\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)
\(=2+2.\sqrt{2}.\sqrt{10}+10\)
\(=\left(\sqrt{2}+\sqrt{10}\right)^2\)
=> \(A=\sqrt{2}+\sqrt{10}\)
Câu hỏi của Nguyen Phuc Duy - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này!
\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right)\sqrt{5}-\left(3\sqrt{\frac{1}{10}}+10\right)=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\frac{3\sqrt{10}}{10}-10\)
\(=-3\sqrt{10}+10-\frac{3\sqrt{10}}{10}-10=-3\sqrt{10}-\frac{3\sqrt{10}}{10}=-3\sqrt{10}\left(1+\frac{1}{10}\right)=\frac{-33\sqrt{10}}{10}=-3,3\sqrt{10}\)
đề là rút gọn các biểu thức sau
nhờ mọi người giải giúp mình. cảm ơn mn nhìu
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}\)
\(=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
b: \(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2-2\sqrt{5}\)
=2căn 5-2-2căn 5
=-2
d: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}=\sqrt{2}\)
A = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}-\sqrt{2}-\sqrt{10}\)
Ta có : B = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow B^2=16-2\sqrt{\left(8+2\sqrt{10+2\sqrt{5}}\right)\left(8-2\sqrt{10+2\sqrt{5}}\right)}\)
\(=16-2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)
\(=16-2\sqrt{24-8\sqrt{5}}\)
\(=16-2\sqrt{\left(2\sqrt{5}-2\right)^2}=16-2\left(2\sqrt{5}-2\right)\)
\(=20-4\sqrt{5}\)
Vì \(8+2\sqrt{10+\sqrt{5}}>8-2\sqrt{10+2\sqrt{5}}\)
\(\Rightarrow B>0\)
\(\Rightarrow B=\sqrt{20-4\sqrt{5}}=2\sqrt{5-\sqrt{5}}\)
\(\Rightarrow A=B-\sqrt{2}-\sqrt{10}=2\sqrt{5-\sqrt{5}}-\sqrt{2}-\sqrt{10}=2\)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{1+2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{1-2\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}=1+\sqrt{5}-\left(1-\sqrt{5}\right)=1+\sqrt{5}-1+\sqrt{5}=2\sqrt{5}\)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
b) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
c) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}=0\)
\(a,Sửa:\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\\ =\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}\\ =2\sqrt{5}-2-2\sqrt{5}=-2\\ b,=\dfrac{\sqrt{32}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\\ =\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=\dfrac{2\sqrt{6}-\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)
Biến đổi vế trái ta có :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
= \(\sqrt{2}\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)\)
Đặt A = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
A^2 = \(4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
= 8 + \(2\sqrt{16-\left(10-2\sqrt{5}\right)}\)
= \(8+2\sqrt{16-10+2\sqrt{5}}\)
= \(8+2\sqrt{6+2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)
=> A = \(\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
=> \(\sqrt{2}A=\sqrt{2}\left(\sqrt{5}+1\right)=\sqrt{10}+\sqrt{2}=VP\) ( ĐPCM)
haha