cho x>y>0 va 2x2+2y2=5xy
tinh gia tri bieu thuc E=x+y/x-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
`a)` Thay `x=1;y=0` vào `A` có:
`A=(15:1+15xx1)+2009xx0`
`A=(15+15)+0=30`
`b)` Thay `x=1;y=0` vào `B` có:
`B=0:(119xx1+4512)+(756:1-0)`
`B=0+(756-0)=756`
THay `x=1;y=0` vào biểu thức `A` ta có :
`A=(15:1+15xx1)+2990xx0`
`A=(15xx1+15xx1)+2990xx0`
`A=(15xx2)+2990xx0`
`A=30+2990xx0`
`A=30+0=30`
Thay `x=1;y=0` vào biểu thức `B` ta có :
\(B=0:\left(119\times1+4512\right)+\left(756:1-0\right)\\ B=0:4631+756\\ B=0+756=756\)
GTNN là -2009 <=> x = 2; y = 3
C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ
Vì - / x-2/ </0
và - / y -3/ </ 0
=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009
Max C = -2009 khi x -2 =0 => x =2 và y -3 =0 => y =3
2x2+2y2=5xy
<=>2x2-5xy+2y2=0
<=>(2x2-4xy)-(xy-2y2)=0
<=>2x(x-2y)-y(x-2y)=0
<=>(x-2y)(2x-y)=0
<=> x-2y=0 hoặc 2x-y=0
*)Nếu x-2y=0=>x=2y
=>E=\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
*)Nếu 2x-y=0=>2x=y
=>E=\(\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)
Ta có: x>y>0
\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}}\)
\(\Rightarrow E=\frac{x+y}{x-y}>0\)
Ta có : E\(=\frac{x+y}{x-y}\)
\(\Rightarrow E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}\)\(=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)
\(\Rightarrow E=\sqrt{9}\)( do E>0)
\(\Leftrightarrow E=3\)