K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

a.

\(\Delta=\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\Rightarrow a-b-c< 0\\a+c>b\Rightarrow a-b+c>0\\a+b>c\Rightarrow a+b-c>0\end{matrix}\right.\)

\(\Rightarrow\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

NV
30 tháng 7 2021

b.

\(\Delta=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)

\(\Rightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

20 tháng 10 2021

AH
Akai Haruma
Giáo viên
20 tháng 10 2021

Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)

\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)

\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác

Do đó ta có đpcm.

19 tháng 7 2018

a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)

                            = a^2 -(b-c)^2

                            = (a-b+c)(a+b-c)

Theo bất đẳng thức tam giác, ta có: 

a+c>b và a+b>c

Suy ra: a-b+c >0 và a+b-c >0

Do đó: (a-b+c)(a+b-c) >0

Vậy a^2 - b^2 -c^2 + 2bc >0

Chúc bạn học tốt.