\(\frac{x^2}{9}=\frac{y^2}{16}\)va\(x^2+y^2=100\)
tim x ; y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow x^2=36\Rightarrow x=\pm6\)
\(\Rightarrow x^2=64\Rightarrow x=\pm8\)
Vậy .....
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{x^2}{9}=\frac{y^2}{16}\)
Ap dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4\)
\(\Rightarrow\frac{x^2}{9}=4\Rightarrow x=4\times9=36\Rightarrow x=6;x=-6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=4\times16=64\Rightarrow y=8;y=-8\)
Vậy x= 6, y = 8
x=-6 , y= -8
nguyen tran phuong vy: vt sai kìa, phải là I don't know
C, CHO 7X=3Y VA X -Y =16
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
=> \(\hept{\begin{cases}x=-4.3\\y=-4.7\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}}\)
bạn viết lại đề đi đè gì mà sai hết
a, x/4 = y/7
=> (x-y)/(4-7) = x/4 = y/7 có x - y = 9
=> 9/-3 = x/4 = y/7
=> x = -3.4 = -12 và y = -3.7 = -21
b, x/2 = y/5
=> 3x/6 = y/5
=> (3x-y)(6 - 5) = x/6 = y/5 mà 3x - y = 5
=> 5 = x/6 = y/5
=> x = 5.6 = 30 và y = 5.5 = 25
a) \(\frac{x}{4}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{9}{-3}=-3\)
\(\Rightarrow\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot7=-21\end{cases}}\)
Đặt \(\frac{x-2}{6}=\frac{y+3}{9}=\frac{z-7}{10}=k\Rightarrow\hept{\begin{cases}x=6k+2\\y=9k-3\\z=10k+7\end{cases}}\)
Theo đề bài: x+y+z=106
<=>\(6k+2+9k-3+10k+7=106\)
<=>\(25k+6=106\)
<=> 25k = 100
<=> k = 4
=> \(\hept{\begin{cases}x=6.4+2=26\\y=9.4-3=33\\z=10.4+7=47\end{cases}}\)
Vậy .........................
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(x^2=4.9=36\)
=> x = 6 hoặc x = -6
=> \(y^2=4.16=64\)
=> y = 8 hoặc y = -8