K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

1-1/6+1/6-1/11+...+1/5x+1-1/5x+6=2005/2006

1-1/5x+6=1-1/2006

5x+6=2006

5x=2000

x=400

16 tháng 8 2015

\(1-\frac{1}{5x+6}=\frac{2005}{2006}\Leftrightarrow5x+6=2006\Leftrightarrow x=400\)

1 tháng 5 2017

Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức trên, ta có:

\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)

\(\Rightarrow1-\frac{1}{5x+6}=\frac{2005}{2006}\)

\(\Rightarrow\)\(\frac{1}{5x+6}=1-\frac{2005}{2006}=\frac{1}{2006}\)

\(\Rightarrow\)\(5x+6=2006\Rightarrow x=400\)

chắc chắn, ủng hộ mink nha

1 tháng 5 2017

         \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2005}{2006}\)

\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)

\(1-\frac{1}{5x+6}=\frac{2005}{2006}\)

        \(\frac{1}{5x+6}=1-\frac{2005}{2006}\)

        \(\frac{1}{5x+6}=\frac{1}{2006}\)

\(\Rightarrow5x+6=2006\)

             \(5x=2006-6\)

            \(5x=2000\)

               \(x=2000:5\)

               \(x=400\)

10 tháng 8 2018

\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)

\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(\Rightarrow1-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(\Rightarrow\frac{1}{5x+6}=1-\frac{2010}{2011}\)

\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2011}\)

\(\Rightarrow5x+6=2011\)

\(\Rightarrow5x=2011-6\)

\(\Rightarrow5x=2005\)

\(\Rightarrow x=401\)

21 tháng 3 2016

Ta có :

\(\frac{5}{1.6}+\frac{5}{6.11}+................+\frac{5}{\left(5.x+1\right).\left(5.x+6\right)}=\)\(\frac{50}{41}\)

=> \(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...............+\frac{1}{5.x+1}-\frac{1}{5.x+6}\) = \(\frac{50}{41}\)

=> \(1-\frac{1}{5.x+6}=\frac{50}{41}\)

=> \(\frac{1}{5.x+6}=\frac{-9}{41}\)................ mình ko tìm ra vì p/s kia ko có tử là 1

bạn xem lại đề bài giúp mình nha 

28 tháng 7 2015

a,\(\frac{x+1}{2}\)\(=\frac{8}{x+1}\)

\(\Leftrightarrow\)(x+1)\(\times\)(x+1) = 8 \(\times\)2

\(\Leftrightarrow\)(x+1)= 16

\(\Leftrightarrow\)(x+1)2 = 42

\(\Rightarrow\)x+1 = 4

\(\Rightarrow\)x = 4 - 1

\(\leftrightarrow\)x = 3

22 tháng 4 2019

\(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)

\(\frac{1}{1}-\frac{1}{5x+6}=\frac{2005}{2006}\)

\(-\frac{1}{5x+6}=\frac{2005}{2006}-\frac{1}{1}\)

\(-\frac{1}{5x+6}=-\frac{1}{2006}\)

\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2006}\)

⇒ 5x + 6 = 2006

⇒ 5x = 2006 - 6 = 2000

⇒ x = 2000 : 5 = 400

Vậy x = 400

14 tháng 7 2015

\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)

\(=\left(\frac{4}{4}-\frac{1}{4}\right).\left(\frac{9}{9}-\frac{1}{9}\right)...\left(\frac{10000}{10000}-\frac{1}{10000}\right)\)

\(=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}=\frac{3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)

\(=\frac{101}{100}\)

\(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)

\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)

\(=5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(\frac{1}{1}-\frac{1}{31}\right)=5.\left(\frac{31}{31}-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)

2 tháng 4 2016

tk mị̣̣̉̉̉̉̉̉̀̉̃́́́nh nhe !

19 tháng 7 2015

a,b you cứ tính bt nhé

c)\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{4}-\frac{1}{11}\)

\(=\frac{7}{44}\)

d) \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)

\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}\)

\(=\frac{150}{31}\)

30 tháng 1 2019

\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)

\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)

30 tháng 1 2019

\(\text{Giải}\)

\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)