tìm a lớn nhất biết 425 chia hết cho và 785 chia hết cho a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
1.
a) Theo đề bài, ta có a là ƯCLN(120; 90)
120 = 23 . 3 . 5
90 = 2 . 32 . 5
ƯCLN(120; 90) = 2 . 3 . 5 = 30
b) Theo đề bài, ta xét ƯCLN(360; 300)
360 = 23 . 32 . 5
300 = 22 . 3 . 52
ƯCLN(360; 300) = 22 . 3 . 5 = 60
Mà Ư(60) = {1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60}
Vậy a\(\in\){1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60}
1) Phần a và b bạn đi tìm ước chung của 2 số đề bài cho sẵn
Do a trong bài lớn nhất nên bạn chọn ước chung của 2 số trong bài là lớn nhất
và a = ước chung lớn nhất của 2 số trong đề bài
2) Đặt ước chung của 2n + 5 và n + 1 là \(a\)
- Theo bài ra, ta có:
\(\hept{\begin{cases}2n+5⋮a\\n+1⋮a\end{cases}}\Rightarrow\hept{\begin{cases}2n+5⋮a\\2.\left(n+1\right)⋮a\end{cases}}\Rightarrow\hept{\begin{cases}2n+5⋮a\\2n+2⋮a\end{cases}}\)
Lấy (2n + 5) - (2n + 2), ta được: (2n+5) - (2n+2) = 2n + 5 - 2n - 2 = 3
\(\Rightarrow3⋮a\)
\(hay\)\(a=3\)( Nếu bạn học số ẩm rồi thì có thêm \(a=-3\) nhé )
Vậy ước chung của 2n + 5 và n + 1 là 3
Ta tìm ƯCLN(425,785)
425=52.17
785=5.157
=> ƯCLN(425,785)=5
Vậy a=5