So sánh A và B :
A=\(\frac{2000}{2001}\)+\(\frac{2001}{2002}\)
B =\(\frac{2000+2001}{2001+2002}\)
giúp mik vs nhé mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Ta thấy \(\frac{2000}{2001+2002}< \frac{2000}{2001}\)
\(\frac{2001}{2001+2002}< \frac{2001}{2002}\)
\(\Rightarrow B< A\)
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) VÀ\(B=\frac{2000+2001}{2001+2002}\)
\(\Leftrightarrow A=\frac{2000}{2001}+\frac{2001}{2002}=\frac{2000+20001}{2001+2002}\) VÀ \(B=\frac{2000+2001}{2001+2002}\)
\(\Rightarrow A=B\)
chắc mk làm sai
Ta có:
B = \(\frac{2000}{2001+2002}\)+ \(\frac{2001}{2001+2002}\)
Vì \(\frac{2000}{2001}\)> \(\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}\)> \(\frac{2001}{2001+2002}\)
=> \(\left(\frac{2000}{2001}+\frac{2001}{2002}\right)\)> \(\left(\frac{2000}{2001+2002}+\frac{2001}{2001+2001}\right)\)
=> A>B
Vậy A>B
Ta có: B = \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000}{4003}+\frac{2001}{4003}\)
Ta thấy : \(\frac{2000}{2001}>\frac{2000}{4003}\)(1)
\(\frac{2001}{2002}>\frac{2001}{4003}\) (2)
Từ (1) và (2) cộng vế với vế, ta được :
\(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{4003}+\frac{2001}{4003}\)
hay \(A=\frac{2000}{2001}+\frac{2001}{2002}>B=\frac{2000+2001}{2001+2002}\)
a) \(\frac{3}{-4}=\frac{-3}{4};\frac{-1}{-4}=\frac{1}{4}\)
Vì - 3 < 1 nên \(\frac{-3}{4}< \frac{1}{4}\)
hay \(\frac{3}{-4}< \frac{-1}{-4}\)
Quy đồng mẫu ta được:
15/17=15.27/17.27=405/459
25/27=25.17/27.27=425/459
⇒405/459<425/459⇒15/17<25/27
Ta có \(\frac{2000}{2001}\approx1;\frac{2001}{2002}\approx1\Rightarrow A\approx2.\)\(\Rightarrow1< A< 2\)
\(2000+2001< 2001+2002\Rightarrow\frac{2000+2001}{2001+2002}< 1\)
Do đó A > B
A = 2000/2001 + 2001/2002 (1)
B = 2000+2001/ 2001+2002
=>\(B=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì\(\frac{2000}{2001+2002}< \frac{2000}{2001}\) (so sánh số cùng tử)
\(\frac{2001}{2001+2002}< \frac{2001}{2002}\) (2)
Từ (1)và (2)=> A>B
A = \(\frac{2000+2001}{2001+2002}\)= \(\frac{4001}{4003}\)
B = \(\frac{2000+2001}{2001+2003}=\frac{4001}{4003}\)
vậy A = B
B=2000/2001+2002 + 2001/2001+2002
Ta có:2000/2001 > 2000/2001+2002
2001/2002 > 2001/2001+2002
Vậy A >B
mình lớp5 nhưng mình bt làm
Xét B=\(\frac{2000+2001}{2001+2002}\)\(=\)\(\frac{2000}{2001+2002}\)\(+\)\(\frac{2001}{2001+2002}\)
Mà \(\frac{2000}{2001}>\frac{2000}{2001+2002}\); \(\frac{2001}{2002}>\frac{2001}{2001+2002}\) \(\Rightarrow\)\(\frac{2000}{2001}+\frac{2001}{2002}\)\(>\frac{2000+2001}{2001+2002}\)
Vậy \(A>B\)