K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

23 tháng 8 2021

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

11 tháng 6 2018

Bất đẳng thức Cosi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của 2 số thực a, b không âm: a+b2ab

Dấu bằng xảy ra khi và chỉ khi a = b

rồi với 3 số thực a, b, c không âm: a+b+c3abc3

Dấu bằng xảy ra khi và chỉ khi a = b = c

rồi với 4 số thực a, b, c, d không âm: a+b+c+d4abcd4

Dấu bằng xảy ra khi và chỉ khi a = b = c = d

Với n số thức không âm x1,x2,x3,xnx1+x2+x3++xnnx1x2x3xnn

Dấu bằng xảy ra khi và chỉ khi x1=x2=x3==xn

7 tháng 6 2020

Bài làm:

Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)

\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)

Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)

Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)

Học tốt!!!!

22 tháng 12 2021

chịu

thôi

22 tháng 12 2021

1 = 1vdfg

9 tháng 3 2017

Vì a ≥ 0 nên √a xác định, b  ≥  0 nên  b  xác định

Ta có:  a - b 2 ≥  0 ⇔ a - 2 a b  + b  ≥  0

⇒ a + b  ≥  2 a b  ⇔  a + b 2 ≥ a b

Dấu đẳng thức xảy ra khi a = b.

23 tháng 3 2016

bunhiacopxki:

CM (ax+by)^2<hoặc bằng(a^2+b^2)(x^2+y^2)

Dầu bằng xảy ra <=>a/x=b/y

nếu ko giải đc nhắn tin cho mk mk giải cho muốn thêm đề thì cũng hỏi mình

28 tháng 7 2021

Tham khảo thử đúng không nha mn

Áp dụng bất đẳng thức cô si cho hai số dương ta có

\(x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow xy\le\dfrac{2017^2}{4}=\dfrac{4068289}{4}\)

Dấu " = " xảy ra khi:   \(x=y=\dfrac{2017}{2}=1008,5\)

Vậy GTLN của tích xy là \(\dfrac{4068289}{4}\) khi \(x=y=1008,5\)