K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{14}\cdot2\cdot33⋮66\)

b) \(3^{m+2}-2^{n+4}+3^m+2^n\)

\(=3^m\cdot9+3-2^n\left(2^4-1\right)\)

\(=3^m\cdot10-2^{n-1}\cdot30\)

\(=30\left(3^{m-1}-2^{n-1}\right)⋮30\)

11 tháng 7 2021

a) \(A=16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33=2^{14}\cdot66⋮66\)

b) Sửa đề 

\(B=3^{n+2}-2^{n+4}+3^n+2^n=3^n\left(3^2+1\right)-2^n\left(2^4-1\right)=3^n\cdot10-2^n\cdot15\\ =3^{n-1}\cdot30-2^{n-1}\cdot30=30\left(3^{n-1}-2^{n-1}\right)⋮30\)

(với mọi n nguyên dương)

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

4 tháng 10 2018
3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

6 tháng 2 2022

Chứng minh với mọi số nguyên dương n thì

3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10

                                      Giải

3^n + 2 – 2^n + 2 + 3^n – 2^n

= 3^n+2 + 3^n – 2^n + 2 -  2^n

= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )

= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )

= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )

= 3^n . 10 – 2^n . 5

= 3^n.10 – 2^n -1.10

= 10.( 3^n – 2^n-1)

Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10

30 tháng 12 2022

\(3^{n+2}-2^{n+4}+3^n+2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)=\left(3^n.9+3^n\right)-\left(2^n.16-2^n\right)=3^n.\left(9+1\right)-2^n.\left(16-1\right)=3^n.10-2^n.15=3^{n-1}.3.10-2^{n-1}.2.15=3^{n-1}.30-2^{n-1}.30=30.\left(3^{n-1}-2^{n-1}\right)\)

Vì \(30⋮30=>30.\left(3^{n-1}-2^{n-1}\right)⋮30=>3^{n+2}-2^{n+4}+3^n+2^n⋮30\)

22 tháng 1 2017

bài nảy dể mình làm rồi ko cần nx nhé

18 tháng 6 2019

\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)

18 tháng 6 2019

Voi n=0 

=>n4+2n3+2n2+2n+1=1=12