Tính:
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)\left(\frac{1}{25}-1\right)...\left(\frac{1}{121}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{120}{121}=\frac{3.8.15...120}{4.9.16...121}\)
\(=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{\left(2.2\right).\left(3.3\right).\left(4.4\right)...\left(11.11\right)}\)
\(=\frac{\left(1.2.3...10\right).\left(3.4.5...12\right)}{\left(2.3.4...11\right).\left(2.3.4...11\right)}=\frac{1.12}{11.2}=\frac{6}{11}\)
ta có :
A=\(\left(-\frac{3}{4}\right)\left(-\frac{8}{9}\right)\left(-\frac{15}{16}\right)...\left(-\frac{120}{121}\right)\)(có 10 số hạng)
= \(\frac{3\cdot8\cdot15\cdot...\cdot120}{4\cdot9\cdot16\cdot...\cdot121}=\frac{\left(1.3\right)\left(2\cdot4\right)\left(3\cdot5\right)\cdot...\cdot\left(10\cdot12\right)}{2^2\cdot3^2\cdot4^2\cdot...\cdot11^2}=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot..\cdot11\right)\left(2\cdot3\cdot4\cdot..\cdot11\right)}\)
=\(\frac{12}{11\cdot2}=\frac{12}{22}\)
a) tạm bỏ số 1 ra => có 2012 số hạng=> có 1006 cặp =(-1)
=> A=1+-(-1).1006=-1005
A=-3.(1-(2/3)2)(1-(2/5)2)...(1-(2/11)2)=-3.(1-2/3)(1+2/3)(1-2/5)(1+2/5)...(1-2/11)(1+2/11)=-3.\(\frac{1}{3}\).\(\frac{5}{3}\).\(\frac{3}{5}\).\(\frac{7}{5}\)...\(\frac{9}{11}.\frac{13}{11}\)
= -\(\frac{13}{11}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)\left(\frac{1}{25}-1\right)....\left(\frac{1}{121}-1\right)\)
\(=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.\frac{-24}{25}....\frac{-120}{121}\)
\(=\left[\left(-1\right)\left(-1\right)\left(-1\right)\left(-1\right)....\left(-1\right)\left(10\right)\text{thừa số -1 }\right].\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{10.12}{11.11}\)
\(=\frac{1.12}{2.11}=\frac{6}{11}\)