cho tam giac ABC vuông tại A có AB < ac và Đường cao AH .kéo dài AH thêm một đoạn HD = HA CM: tg BCD vuông tại D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
Xét ΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD(gt)
Do đó: ΔCHA=ΔCHD(hai cạnh góc vuông)
Suy ra: CA=CD(hai cạnh tương ứng)
Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
HA=HD(gt)
Do đó: ΔBHA=ΔBHD(Hai cạnh góc vuông)
Suy ra: BA=BD(hai cạnh tương ứng)
Xét ΔCAB và ΔCDB có
CA=CD(cmt)
CB chung
BA=BD(cmt)
Do đó: ΔCAB=ΔCDB(c-c-c)
Suy ra: \(\widehat{CAB}=\widehat{CDB}\)(hai góc tương ứng)
hay \(\widehat{CDB}=90^0\)(đpcm)
Xét tam giác ACH và tam giác DCH có:
H=90o(gt)
CH chung(gt)
AH=HD(gt)
=> 2 tam giác = nhau(2 cạnh gv)
=> C1=C2 (2 góc tương ứng)
=> CA=CD( 2 cạnh tương ứng)
Xét tam giác ACB và tam giác CDB có:
C1=C2(cmt)
CA=CD (cmt)
CB chung(gt)
=> 2 tam giác= nhau( cgc)
=> A=D=90o(2 cạnh tương ứng)
tick mk nhé