Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 5 m. Nếu giảm chiều dài đi 5m và giảm chiều rộng đi 4m thì diện tich mảnh đất giảm đi 180m2. Tính chiều dài và chiều rộng ban đầu của mảnh đất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x
=>Chiều dài là x+5
Theo đề, ta có: (x+5-5)(x-4)=x(x+5)-180
=>x^2-4x-x^2-5x=-180
=>9x=180
=>x=20
=>Chiều dài là 25m
gọi x(m) là chiều rộng (x>0)ta có:
Chiều dài lúc đầu: x+5
Chiều rộng lúc sau:x-4
Chiều dài lúc sau:(x+5)-5
Theo đề ta có phương trình:
\(\text{(x-4).(x+5)-5=x.(x+5)-180}\)
\(\Leftrightarrow\text{(x-4).(x+5)-x.(x+5)+180=0}\)
\(\Leftrightarrow\left(x+5\right).\left(x-4-x\right)+180=0\)
\(\Leftrightarrow\left(x+5\right).\left(-4\right)+180\)
$\Leftrightarrow -4x-20+180=0$
\(\Leftrightarrow-4x+160=0\)
\(\Leftrightarrow-4x=-160\)
\(\Leftrightarrow x=40\)
Vậy chiều rộng x=40 m
Chiều dài :x+5=40+5=45m
Gọi chiều rộng của hình chữ nhật ban đầu là x (mét), (x > 4).
Thiết lập được PT: x (x + 5) - (x - 4) x = 180.
Giải ra ta được x = 20.
Từ đó tìm được chu vi ban đầu là 90m.
Gọi chiều dài và chiều rộng ll là `a,b(m)(a>b>0)`
Theo bài:`a-b=5(1)`
Nếu giảm chiều rộng đi 4m và giảm chiều dài đi 5m thì diện tích mảnh đất giảm đi 180 m2
`=>(a-5)(b-4)+180=ab`
`<=>ab-5b-4a+20+180=ab`
`<=>5b+4a=200(2)`
(1)(2)=>HPt:
$\begin{cases}a-b=5\\4a+5b=200\\\end{cases}$
`<=>` $\begin{cases}4a-4b=20\\4a+5b=200\\\end{cases}$
`<=>` $\begin{cases}9b=180\\a=b+5\\\end{cases}$
`<=>` $\begin{cases}b=20\\a=25\\\end{cases}$
Vậy chiều dài là 25,chiều rộng là 20m
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng đó(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chiều dài lớn hơn chiều rộng 5m nên ta có phương trình: \(a-b=5\)(1)
Diện tích ban đầu của thửa ruộng là: \(a\cdot b\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 4m thì diện tích mảnh đất giảm đi \(180m^2\)nên ta có phương trình:
\(\left(a-5\right)\left(b-4\right)=ab-180\)
\(\Leftrightarrow ab-4a-5b+20-ab+180=0\)
\(\Leftrightarrow-4a-5b+200=0\)
\(\Leftrightarrow-4a-5b=-200\)
\(\Leftrightarrow4a+5b=200\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\4a+5b=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-4b=20\\4a+5b=200\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-9b=-180\\a-b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\a=5+b=5+20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích của thửa ruộng đó là:
\(S=a\cdot b=25\cdot20=500\left(m^2\right)\)
Gọi chiều rộng ban đầu là x
Chiều dài ban đầu là: x+17
Theo đề, ta có: \(x\left(x+17\right)=\left(x+12\right)\left(x+2\right)\)
\(\Leftrightarrow x^2+14x+24-x^2-17x=0\)
\(\Leftrightarrow-3x=-24\)
hay x=8
Vậy: Diện tích ban đầu là \(200m^2\)
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\left(a+b\right)=120\\\left(b+5+\dfrac{3}{4}a\right)=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=60\\\dfrac{3}{4}a+b=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}a=5\\a+b=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=40\end{matrix}\right.\)
Diện tích ban đầu la 20x40=800(m2)
Gọi chiều dài là x
=>Chiều rộng là 50-x
Theo đề, ta có:(x+5)(50-x-4)=x(50-x)-40
=>(x+5)(46-x)=x(50-x)-40
=>46x-x^2+230-5x=50x-x^2-40
=>41x+230=50x-40
=>-9x=-270
=>x=30
=>Chiều rộng là 20m
Gọi \(x,y\left(m\right)\) là chiều dài và chiều rộng mảnh đất \(\left(x,y>0\right)\)
Theo đề bài, ta có hệ pt :
\(\left\{{}\begin{matrix}\left(x+y\right).2=100\\\left(x+5\right)\left(y-4\right)=xy-40\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\xy-4x+5y-20-xy+40=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+5y=-20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=30\left(n\right)\\y=20\left(n\right)\end{matrix}\right.\)
Vậy chiều dài ban đầu là 30m, chiều rộng ban đầu là 20m
Gọi chiều dài ban đầu của mảnh đất là a(m)
Đk a>0
Khi đó: Chiều rộng ban đầu của mảnh đất là a-5(m)
Diện tích mảnh đất ban đầu là a(a-5) (m2)
Diện tích mảnh đất khi chiều dài mảnh đất giảm đi 5m và chiều rộng mảnh đất giảm đi 4m là: (a-5)(a-5-4) (m2)
Theo đề bài, ta có phương trình:
\(a\left(a-5\right)-\left(a-5\right)\left(a-5-4\right)=180\)
\(\Leftrightarrow a^2-5a-\left(a^2-5a-4a-5a+25+20\right)=180\)
\(\Leftrightarrow a^2-5a-a^2+5a+4a+5a-25-20=180\)
\(\Leftrightarrow9a-25-20=180\)
\(\Leftrightarrow9a=180+25+20\)
\(\Leftrightarrow9a=225\)
\(\Leftrightarrow a=25\)(thỏa mãn)
Vậy chiều dài ban đầu của mảnh đất là 25 m
chiều rộng ban đầu của mảnh đất là 25- 5 =20 m