K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

vào câu hỏi tương tự mà lm tương tự như thế nha

29 tháng 1 2023

\(a.\) \(ax^2-a^2x-x+a\)

\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)

\(=ax\left(x-a\right)-\left(x-a\right)\)

\(=\left(ax-1\right)\left(x-a\right)\)

\(b.\) \(18x^3-12x^2+2x\)

\(=2x\left(9x^2-6x+1\right)\)

\(=2x\left(3x-1\right)^2\)

\(c.\) \(x^3-5x^2-4x+20\)

\(=\left(x^3-5x^2\right)-\left(4x-20\right)\)

\(=x^2\left(x-5\right)-4\left(x-5\right)\)

\(=\left(x^2-4\right)\left(x-5\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)

\(d.\) \(\left(x+7\right)\left(x+15\right)+15\)

\(=x^2+15x+7x+105+15\)

\(=x^2+22x+120\)

\(=\left(x+10\right)\left(x+12\right)\)

29 tháng 1 2023

loading...  

16 tháng 10 2020

a) Ta có: \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+105+15\)

\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+120\)

\(=\left(x^2+8x\right)^2+12\left(x^2+8x\right)+10\left(x^2+8x\right)+120\)

\(=\left(x^2+8x\right)\left(x^2+8x+12\right)+10\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

b) Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-2-4\)

\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)

\(=\left(12x^2+11x\right)^2+3\left(12x^2+11x\right)-2\left(12x^2+11x\right)-6\)

\(=\left(12x^2+11x\right)\left(12x^2+11x+3\right)-2\left(12x^2+11x+3\right)\)

\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)

c) Ta có: \(\left(x^2+2x\right)^2+9x^2+18x+20\)

\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)

\(=\left(x^2+2x\right)^2+5\left(x^2+2x\right)+4\left(x^2+2x\right)+20\)

\(=\left(x^2+2x\right)\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)\)

\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)

15 tháng 9 2021

\(A=4x^2+6x=2x\left(2x+3\right)\)

\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)

\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)

\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)

\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)

15 tháng 9 2021

\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)

28 tháng 10 2018

 \(A=\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)-18\)

\(=\frac{1}{4}\left[\left(2x+1\right)\left(x+1\right)^2.4\left(2x+3\right)\right]-72\)

\(=\frac{1}{4}\left[\left(2x+1\right)\left(2x+3\right)\left(2x+2\right)^2\right]-72\)

\(=\frac{1}{4}\left[\left(4x^2+8x+3\right)\left(4x^2+8x+4\right)-72\right]\)

Đặt: \(4x^2+8x+3=t\)

Ta có:  \(A=\frac{1}{4}\left[t^2+t-72\right]\)

\(=\frac{1}{4}\left[\left(t+9\right)\left(t-8\right)\right]\)

\(=\frac{1}{4}\left[\left(4x^2+8x+12\right)\left(4x^2+8x-5\right)\right]\)

\(=\left(x^2+2x+3\right)\left[4x^2+8x-5\right]\)

\(=\left(x^2+2x+3\right)\left(2x-1\right)\left(2x+5\right)\)

 \(B=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x+2=a\)

Khi đó: \(B=a\left(a-3\right)-4\)

\(=a^2-3a-4=\left(a+1\right)\left(a-4\right)\)

\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)

        \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)

\(=x^4-2x^3+6x^2-8x+8\)

\(=x^4-2x^3+2x^2+4x^2-8x+8\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)

       \(3x^4-5x^3-18x^2-3x+5\)

\(=3x^4+x^3-x^2-6x^3-2x^2+2x-15x^2-5x+5\)

\(=x^2\left(3x^2+x-1\right)-2x\left(3x^2+x-1\right)-5\left(3x^2+x-1\right)\)

\(=\left(3x^2+x-1\right)\left(x^2-2x-5\right)\)

Bài này thật sự khó và hay đấy.