Chứng tỏ : a/b < c/d thì a/b < a+c/b+d < c/d
( ai trả lời đúng và nhanh nhất sẽ dc **** ^^)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
a+b= c+d
suy ra a = c+d-b thay vao ab + 1 = cd
suy ra (c+d-b)* b + 1 = cd
cb+db-b^2 +1 = cd
cb + db - b^2 +1 - cd = 0
(b-d)(c-d) = - 1
a,b,c,d nguyen nen B-d va c-d nguyen
Ta co 2 truong hop
b - d = -1 va c - b = 1
d = b + 1 va c = 1+ b
suy ra d = b (dpcm)
TH2
b - d = 1 c - b = -1
d = b - 1 c = b- 1
suy d = c (dpcm 0
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=> cd(a2 + b2) = ab(c2 + d2)
=> a2cd + b2cd = abc2 + abd2
=> a2cd + b2cd - abc2 - abd2 = 0
=> (a2cd - abc2) + (b2cd - abd2) = 0
=> ac(ad - bc) + bd(bc - ad) = 0
=> ac(ad - bc) - bd(ad - bc) = 0
=> (ac - bd)(ad - bc) = 0
=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Rightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\Rightarrow\text{đpcm}\)
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác
Trong 4 số a,b,c,da,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2; d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12
Ta có đpcm,
\(\frac{a}{b}